rasmodev's picture
Update app.py
35ba659
raw
history blame
5.7 kB
import streamlit as st
import pickle
import pandas as pd
import numpy as np
# Page Title with Style
# st.title("๐Ÿฉธ Sepsis Prediction App")
# Page Title with Style (Centered)
st.markdown(
f"""
<div style="text-align: center;">
<h1 style="color: #800000;">๐Ÿฉธ Sepsis Prediction App</h1>
</div>
""",
unsafe_allow_html=True
)
# Welcome Message with Style (Centered)
st.markdown(
f"""
<div style="text-align: center;">
<p>๐Ÿ‘‹ Welcome to the Sepsis Prediction App!</p>
</div>
""",
unsafe_allow_html=True
)
# Sepsis Information
st.markdown(
"""
**Sepsis** is a critical medical condition triggered by the body's extreme response to an infection. It can lead to organ failure and, if not detected early, poses a serious threat to life.
"""
)
# Link to WHO Fact Sheet on Sepsis
st.markdown("๐Ÿ”— **Learn more about sepsis from [World Health Organization (WHO)](https://www.who.int/news-room/fact-sheets/detail/sepsis#:~:text=Overview,problems%20are%20at%20higher%20risk.)**")
st.markdown("---")
st.image("https://dinizululawgroup.com/wp-content/uploads/2020/07/news.jpg", width=700)
st.write("Enter the medical data in the input fields below, then click 'Predict Sepsis', and get the patient's Sepsis prediction")
# About Section with Style
st.sidebar.title("โ„น๏ธ About")
st.sidebar.info(
"This app harnesses the power of machine learning to predict the onset of sepsis based on medical input data. "
"The app is meant to assist healthcare professionals to intervene promptly and save lives. "
"It uses a machine learning model trained on a dataset of sepsis cases."
)
# Load The Train Dataset
train_df = pd.read_csv("Patients_Files_Train.csv")
# Training Dataset Information in the sidebar
st.sidebar.markdown("๐Ÿ“Š **Training Dataset Information:**")
st.sidebar.write(
"The training dataset used for building the machine learning model is loaded from the file 'Patients_Files_Train.csv'."
" Here is a snapshot of the training dataset:"
)
st.sidebar.write(train_df.head())
# Load the model and key components
with open('model_and_key_components.pkl', 'rb') as file:
loaded_components = pickle.load(file)
loaded_model = loaded_components['model']
loaded_scaler = loaded_components['scaler']
# Data Fields
data_fields = {
"**PRG**": "**Number of Pregnancies (applicable only to females)**\n - The total number of pregnancies a female patient has experienced.",
"**PL**": "**Plasma Glucose Concentration (mg/dL)**\n - The concentration of glucose in the patient's blood). It provides insights into the patient's blood sugar levels.",
"**PR**": "**Diastolic Blood Pressure (mm Hg)**\n - The diastolic blood pressure, representing the pressure in the arteries when the heart is at rest between beats.",
"**SK**": "**Triceps Skinfold Thickness (mm)**\n - The thickness of the skinfold on the triceps, measured in millimeters (mm). This measurement is often used to assess body fat percentage.",
"**TS**": "**2-hour Serum Insulin (mu U/ml)**\n - The level of insulin in the patient's blood two hours after a meal, measured in micro international units per milliliter (mu U/ml).",
"**M11**": "**Body Mass Index (BMI) (weight in kg / {(height in m)}^2)**\n - BMI provides a standardized measure that helps assess the degree of body fat and categorizes individuals into different weight status categories, such as underweight, normal weight, overweight, and obesity.",
"**BD2**": "**Diabetes pedigree function (mu U/ml)**\n - The function provides information about the patient's family history of diabetes.",
"**Age**": "**Age of the Patient (years)**\n - Age is an essential factor in medical assessments and can influence various health outcomes."
}
# Organize input fields into two columns
col1, col2 = st.columns(2)
# Initialize input_data dictionary
input_data = {}
# Function to preprocess input data
def preprocess_input_data(input_data):
numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age']
input_data_scaled = loaded_scaler.transform([list(input_data.values())])
return pd.DataFrame(input_data_scaled, columns=numerical_cols)
# Function to make predictions
def make_predictions(input_data_scaled_df):
y_pred = loaded_model.predict(input_data_scaled_df)
sepsis_mapping = {0: 'Negative', 1: 'Positive'}
return sepsis_mapping[y_pred[0]]
# Input Data Fields in two columns
with col1:
input_data["PRG"] = st.slider("PRG: Number of Pregnancies", 0, 20, 0)
input_data["PL"] = st.number_input("PL: Plasma Glucose Concentration (mg/dL)", value=0.0)
input_data["PR"] = st.number_input("PR: Diastolic Blood Pressure (mm Hg)", value=0.0)
input_data["SK"] = st.number_input("SK: Triceps Skinfold Thickness (mm)", value=0.0)
with col2:
input_data["TS"] = st.number_input("TS: 2-Hour Serum Insulin (mu U/ml)", value=0.0)
input_data["M11"] = st.number_input("M11: Body Mass Index (BMI)", value=0.0)
input_data["BD2"] = st.number_input("BD2: Diabetes Pedigree Function (mu U/ml)", value=0.0)
input_data["Age"] = st.slider("Age: Age of the patient (years)", 0, 100, 0)
# Predict Button with Style
if st.button("๐Ÿ”ฎ Predict Sepsis"):
try:
input_data_scaled_df = preprocess_input_data(input_data)
sepsis_status = make_predictions(input_data_scaled_df)
st.success(f"The predicted sepsis status is: {sepsis_status}")
except Exception as e:
st.error(f"An error occurred: {e}")
# Display Data Fields and Descriptions
st.sidebar.title("๐Ÿ” Data Fields")
for field, description in data_fields.items():
st.sidebar.markdown(f"{field}: {description}")