File size: 5,700 Bytes
a562d9d dd8cdb5 988a745 3d9e875 bab442a 37401bd 3d9e875 08b59fb 3d9e875 37401bd 3d9e875 37401bd dd8cdb5 8a5bdef ea42492 399bafe 37401bd a91f564 8a5bdef dd8cdb5 9a9385e dd8cdb5 c317fae 35ba659 c317fae 35ba659 c317fae a562d9d a9cdfb1 4610943 d2322c7 318b7fb c64d12f a562d9d ed34a12 a562d9d 318b7fb 776bed5 ea4062c 318b7fb ea4062c 318b7fb 8a5bdef 0b12140 a562d9d 8a5bdef a562d9d da0faaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import streamlit as st
import pickle
import pandas as pd
import numpy as np
# Page Title with Style
# st.title("๐ฉธ Sepsis Prediction App")
# Page Title with Style (Centered)
st.markdown(
f"""
<div style="text-align: center;">
<h1 style="color: #800000;">๐ฉธ Sepsis Prediction App</h1>
</div>
""",
unsafe_allow_html=True
)
# Welcome Message with Style (Centered)
st.markdown(
f"""
<div style="text-align: center;">
<p>๐ Welcome to the Sepsis Prediction App!</p>
</div>
""",
unsafe_allow_html=True
)
# Sepsis Information
st.markdown(
"""
**Sepsis** is a critical medical condition triggered by the body's extreme response to an infection. It can lead to organ failure and, if not detected early, poses a serious threat to life.
"""
)
# Link to WHO Fact Sheet on Sepsis
st.markdown("๐ **Learn more about sepsis from [World Health Organization (WHO)](https://www.who.int/news-room/fact-sheets/detail/sepsis#:~:text=Overview,problems%20are%20at%20higher%20risk.)**")
st.markdown("---")
st.image("https://dinizululawgroup.com/wp-content/uploads/2020/07/news.jpg", width=700)
st.write("Enter the medical data in the input fields below, then click 'Predict Sepsis', and get the patient's Sepsis prediction")
# About Section with Style
st.sidebar.title("โน๏ธ About")
st.sidebar.info(
"This app harnesses the power of machine learning to predict the onset of sepsis based on medical input data. "
"The app is meant to assist healthcare professionals to intervene promptly and save lives. "
"It uses a machine learning model trained on a dataset of sepsis cases."
)
# Load The Train Dataset
train_df = pd.read_csv("Patients_Files_Train.csv")
# Training Dataset Information in the sidebar
st.sidebar.markdown("๐ **Training Dataset Information:**")
st.sidebar.write(
"The training dataset used for building the machine learning model is loaded from the file 'Patients_Files_Train.csv'."
" Here is a snapshot of the training dataset:"
)
st.sidebar.write(train_df.head())
# Load the model and key components
with open('model_and_key_components.pkl', 'rb') as file:
loaded_components = pickle.load(file)
loaded_model = loaded_components['model']
loaded_scaler = loaded_components['scaler']
# Data Fields
data_fields = {
"**PRG**": "**Number of Pregnancies (applicable only to females)**\n - The total number of pregnancies a female patient has experienced.",
"**PL**": "**Plasma Glucose Concentration (mg/dL)**\n - The concentration of glucose in the patient's blood). It provides insights into the patient's blood sugar levels.",
"**PR**": "**Diastolic Blood Pressure (mm Hg)**\n - The diastolic blood pressure, representing the pressure in the arteries when the heart is at rest between beats.",
"**SK**": "**Triceps Skinfold Thickness (mm)**\n - The thickness of the skinfold on the triceps, measured in millimeters (mm). This measurement is often used to assess body fat percentage.",
"**TS**": "**2-hour Serum Insulin (mu U/ml)**\n - The level of insulin in the patient's blood two hours after a meal, measured in micro international units per milliliter (mu U/ml).",
"**M11**": "**Body Mass Index (BMI) (weight in kg / {(height in m)}^2)**\n - BMI provides a standardized measure that helps assess the degree of body fat and categorizes individuals into different weight status categories, such as underweight, normal weight, overweight, and obesity.",
"**BD2**": "**Diabetes pedigree function (mu U/ml)**\n - The function provides information about the patient's family history of diabetes.",
"**Age**": "**Age of the Patient (years)**\n - Age is an essential factor in medical assessments and can influence various health outcomes."
}
# Organize input fields into two columns
col1, col2 = st.columns(2)
# Initialize input_data dictionary
input_data = {}
# Function to preprocess input data
def preprocess_input_data(input_data):
numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age']
input_data_scaled = loaded_scaler.transform([list(input_data.values())])
return pd.DataFrame(input_data_scaled, columns=numerical_cols)
# Function to make predictions
def make_predictions(input_data_scaled_df):
y_pred = loaded_model.predict(input_data_scaled_df)
sepsis_mapping = {0: 'Negative', 1: 'Positive'}
return sepsis_mapping[y_pred[0]]
# Input Data Fields in two columns
with col1:
input_data["PRG"] = st.slider("PRG: Number of Pregnancies", 0, 20, 0)
input_data["PL"] = st.number_input("PL: Plasma Glucose Concentration (mg/dL)", value=0.0)
input_data["PR"] = st.number_input("PR: Diastolic Blood Pressure (mm Hg)", value=0.0)
input_data["SK"] = st.number_input("SK: Triceps Skinfold Thickness (mm)", value=0.0)
with col2:
input_data["TS"] = st.number_input("TS: 2-Hour Serum Insulin (mu U/ml)", value=0.0)
input_data["M11"] = st.number_input("M11: Body Mass Index (BMI)", value=0.0)
input_data["BD2"] = st.number_input("BD2: Diabetes Pedigree Function (mu U/ml)", value=0.0)
input_data["Age"] = st.slider("Age: Age of the patient (years)", 0, 100, 0)
# Predict Button with Style
if st.button("๐ฎ Predict Sepsis"):
try:
input_data_scaled_df = preprocess_input_data(input_data)
sepsis_status = make_predictions(input_data_scaled_df)
st.success(f"The predicted sepsis status is: {sepsis_status}")
except Exception as e:
st.error(f"An error occurred: {e}")
# Display Data Fields and Descriptions
st.sidebar.title("๐ Data Fields")
for field, description in data_fields.items():
st.sidebar.markdown(f"{field}: {description}") |