File size: 5,700 Bytes
a562d9d
 
 
 
 
dd8cdb5
988a745
 
 
 
 
 
 
 
 
 
3d9e875
bab442a
 
 
 
 
 
 
 
 
37401bd
3d9e875
 
 
08b59fb
3d9e875
 
37401bd
3d9e875
 
37401bd
dd8cdb5
8a5bdef
ea42492
399bafe
37401bd
a91f564
8a5bdef
dd8cdb5
 
 
9a9385e
 
dd8cdb5
 
 
c317fae
35ba659
c317fae
35ba659
 
 
 
 
 
 
c317fae
a562d9d
 
 
 
 
 
 
 
 
a9cdfb1
4610943
 
 
 
 
 
 
d2322c7
318b7fb
c64d12f
a562d9d
ed34a12
 
 
a562d9d
 
 
 
 
 
 
 
 
 
 
 
318b7fb
 
776bed5
ea4062c
 
 
318b7fb
 
ea4062c
 
 
 
318b7fb
8a5bdef
0b12140
a562d9d
 
 
 
 
 
 
 
8a5bdef
a562d9d
da0faaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
import pickle
import pandas as pd
import numpy as np

# Page Title with Style
# st.title("๐Ÿฉธ Sepsis Prediction App")
# Page Title with Style (Centered)
st.markdown(
    f"""
    <div style="text-align: center;">
        <h1 style="color: #800000;">๐Ÿฉธ Sepsis Prediction App</h1>
    </div>
    """,
    unsafe_allow_html=True
)

# Welcome Message with Style (Centered)
st.markdown(
    f"""
    <div style="text-align: center;">
        <p>๐Ÿ‘‹ Welcome to the Sepsis Prediction App!</p>
    </div>
    """,
    unsafe_allow_html=True
)

# Sepsis Information
st.markdown(
    """
    **Sepsis** is a critical medical condition triggered by the body's extreme response to an infection. It can lead to organ failure and, if not detected early, poses a serious threat to life.
    """
)

# Link to WHO Fact Sheet on Sepsis
st.markdown("๐Ÿ”— **Learn more about sepsis from [World Health Organization (WHO)](https://www.who.int/news-room/fact-sheets/detail/sepsis#:~:text=Overview,problems%20are%20at%20higher%20risk.)**")

st.markdown("---")

st.image("https://dinizululawgroup.com/wp-content/uploads/2020/07/news.jpg", width=700)


st.write("Enter the medical data in the input fields below, then click 'Predict Sepsis', and get the patient's Sepsis prediction")

# About Section with Style
st.sidebar.title("โ„น๏ธ About")
st.sidebar.info(
    "This app harnesses the power of machine learning to predict the onset of sepsis based on medical input data. "
    "The app is meant to assist healthcare professionals to intervene promptly and save lives. "
    "It uses a machine learning model trained on a dataset of sepsis cases."
)

# Load The Train Dataset
train_df = pd.read_csv("Patients_Files_Train.csv")

# Training Dataset Information in the sidebar
st.sidebar.markdown("๐Ÿ“Š **Training Dataset Information:**")
st.sidebar.write(
    "The training dataset used for building the machine learning model is loaded from the file 'Patients_Files_Train.csv'."
    " Here is a snapshot of the training dataset:"
)
st.sidebar.write(train_df.head())

# Load the model and key components
with open('model_and_key_components.pkl', 'rb') as file:
    loaded_components = pickle.load(file)

loaded_model = loaded_components['model']
loaded_scaler = loaded_components['scaler']

# Data Fields
data_fields = {
    "**PRG**": "**Number of Pregnancies (applicable only to females)**\n   - The total number of pregnancies a female patient has experienced.",
    "**PL**": "**Plasma Glucose Concentration (mg/dL)**\n   - The concentration of glucose in the patient's blood). It provides insights into the patient's blood sugar levels.",
    "**PR**": "**Diastolic Blood Pressure (mm Hg)**\n   - The diastolic blood pressure, representing the pressure in the arteries when the heart is at rest between beats.",
    "**SK**": "**Triceps Skinfold Thickness (mm)**\n   - The thickness of the skinfold on the triceps, measured in millimeters (mm). This measurement is often used to assess body fat percentage.",
    "**TS**": "**2-hour Serum Insulin (mu U/ml)**\n   - The level of insulin in the patient's blood two hours after a meal, measured in micro international units per milliliter (mu U/ml).",
    "**M11**": "**Body Mass Index (BMI) (weight in kg / {(height in m)}^2)**\n   - BMI provides a standardized measure that helps assess the degree of body fat and categorizes individuals into different weight status categories, such as underweight, normal weight, overweight, and obesity.",
    "**BD2**": "**Diabetes pedigree function (mu U/ml)**\n   - The function provides information about the patient's family history of diabetes.",
    "**Age**": "**Age of the Patient (years)**\n   - Age is an essential factor in medical assessments and can influence various health outcomes."
}
# Organize input fields into two columns
col1, col2 = st.columns(2)

# Initialize input_data dictionary
input_data = {}

# Function to preprocess input data
def preprocess_input_data(input_data):
    numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age']
    input_data_scaled = loaded_scaler.transform([list(input_data.values())])
    return pd.DataFrame(input_data_scaled, columns=numerical_cols)

# Function to make predictions
def make_predictions(input_data_scaled_df):
    y_pred = loaded_model.predict(input_data_scaled_df)
    sepsis_mapping = {0: 'Negative', 1: 'Positive'}
    return sepsis_mapping[y_pred[0]]

# Input Data Fields in two columns
with col1:
    input_data["PRG"] = st.slider("PRG: Number of Pregnancies", 0, 20, 0)
    input_data["PL"] = st.number_input("PL: Plasma Glucose Concentration (mg/dL)", value=0.0)
    input_data["PR"] = st.number_input("PR: Diastolic Blood Pressure (mm Hg)", value=0.0)
    input_data["SK"] = st.number_input("SK: Triceps Skinfold Thickness (mm)", value=0.0)

with col2:
    input_data["TS"] = st.number_input("TS: 2-Hour Serum Insulin (mu U/ml)", value=0.0)
    input_data["M11"] = st.number_input("M11: Body Mass Index (BMI)", value=0.0)
    input_data["BD2"] = st.number_input("BD2: Diabetes Pedigree Function (mu U/ml)", value=0.0)
    input_data["Age"] = st.slider("Age: Age of the patient (years)", 0, 100, 0)

# Predict Button with Style
if st.button("๐Ÿ”ฎ Predict Sepsis"):
    try:
        input_data_scaled_df = preprocess_input_data(input_data)
        sepsis_status = make_predictions(input_data_scaled_df)
        st.success(f"The predicted sepsis status is: {sepsis_status}")
    except Exception as e:
        st.error(f"An error occurred: {e}")

# Display Data Fields and Descriptions
st.sidebar.title("๐Ÿ” Data Fields")
for field, description in data_fields.items():
    st.sidebar.markdown(f"{field}: {description}")