File size: 21,925 Bytes
cf59443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885733a
 
 
c2577e5
 
 
 
885733a
c2577e5
885733a
 
 
c2577e5
885733a
 
c2577e5
885733a
 
c2577e5
885733a
c2577e5
 
885733a
 
c2577e5
885733a
c2577e5
 
 
 
 
 
 
cf59443
c2577e5
cf59443
c2577e5
 
 
885733a
c2577e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885733a
 
 
 
 
 
 
 
 
 
 
c2577e5
 
 
 
 
885733a
 
c2577e5
 
 
 
 
 
885733a
 
c2577e5
885733a
c2577e5
885733a
c2577e5
 
885733a
 
c2577e5
 
 
 
 
 
 
 
 
885733a
c2577e5
885733a
 
 
 
 
c2577e5
885733a
 
 
 
c2577e5
 
 
 
885733a
 
 
c2577e5
885733a
 
 
 
 
 
c2577e5
885733a
 
 
 
c2577e5
 
 
 
885733a
 
 
 
c2577e5
 
 
 
 
 
 
885733a
 
 
 
c2577e5
 
0606f0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ab8ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e17d14
4ab8ff5
 
 
 
 
 
 
 
 
 
 
 
bfed36f
 
4ab8ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfed36f
 
4ab8ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfed36f
4ab8ff5
 
 
 
 
 
 
 
 
 
 
 
bfed36f
4ab8ff5
 
 
bfed36f
 
4ab8ff5
bfed36f
4ab8ff5
 
 
 
 
 
 
 
 
 
bfed36f
4ab8ff5
 
 
 
 
 
bfed36f
 
 
 
4ab8ff5
bfed36f
 
 
 
 
 
 
4ab8ff5
bfed36f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# import gradio as gr
# from huggingface_hub import InferenceClient
# import spaces



# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# @spaces.GPU
# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a Chatbot who only answers spiritual questions based on Indian scriptures and declines answering other questions.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],

# )


# if __name__ == "__main__":
#     demo.launch()

# import os
# import gradio as gr
# from huggingface_hub import InferenceClient
# from huggingface_hub.utils import HfHubHTTPError 

# MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
# HF_TOKEN = os.getenv("HF_TOKEN")  # ⚠️ set this in Spaces → Settings → Secrets

# client = InferenceClient(model=MODEL_ID, token=HF_TOKEN)



# def _build_zephyr_prompt(system_message: str, history, user_msg: str) -> str:
#     parts = []
#     if system_message:
#         parts.append(f"<|system|>\n{system_message}\n</s>")
#     for u, a in (history or []):
#         if u:
#             parts.append(f"<|user|>\n{u}\n</s>")
#         if a:
#             parts.append(f"<|assistant|>\n{a}\n</s>")
#     parts.append(f"<|user|>\n{user_msg}\n</s>\n<|assistant|>\n")
#     return "\n".join(parts)


# def respond(message, history, system_message, max_tokens, temperature, top_p):
#     # Early guardrails for missing token
#     if not HF_TOKEN:
#         yield (
#             "⚠️ Missing HF_TOKEN.\n\n"
#             "Set a Hugging Face access token in your Space:\n"
#             "Settings → Repository secrets → Add secret → Name: HF_TOKEN, Value: <your token>\n"
#             "Token needs at least 'read' scope."
#         )
#         return

#     # Try OpenAI-like chat completion first
#     try:
#         response_text = ""
#         for chunk in client.chat_completion(
#             messages=(
#                 [{"role": "system", "content": system_message}] if system_message else []
#             )
#             + [
#                 msg
#                 for pair in (history or [])
#                 for msg in (
#                     [{"role": "user", "content": pair[0]}] if pair and pair[0] else []
#                 )
#                 + (
#                     [{"role": "assistant", "content": pair[1]}]
#                     if pair and len(pair) > 1 and pair[1]
#                     else []
#                 )
#             ]
#             + [{"role": "user", "content": message}],
#             max_tokens=max_tokens,
#             temperature=temperature,
#             top_p=top_p,
#             stream=True,
#         ):
#             token = getattr(chunk.choices[0].delta, "content", None)
#             if token:
#                 response_text += token
#                 yield response_text
#         return
#     except HfHubHTTPError as e:
#         # Handle 401 explicitly with helpful guidance
#         try:
#             status = e.response.status_code
#         except Exception:
#             status = None
#         if status == 401:
#             yield (
#                 "❌ 401 Unauthorized from Hugging Face Inference API.\n\n"
#                 "Fix:\n"
#                 "1) Create a token at https://huggingface.co/settings/tokens with at least 'read' scope.\n"
#                 "2) In your Space, go to Settings → Repository secrets → Add secret\n"
#                 "   Name: HF_TOKEN, Value: <your token>\n"
#                 "3) Restart the Space.\n"
#             )
#             return
#         # Otherwise drop to fallback
#     except Exception:
#         pass

#     # Fallback: raw text_generation with Zephyr chat format
#     zephyr_prompt = _build_zephyr_prompt(system_message, history, message)
#     try:
#         response_text = ""
#         # for tok in client.text_generation(
#         #     zephyr_prompt,
#         #     max_new_tokens=max_tokens,
#         #     temperature=temperature,
#         #     top_p=top_p,
#         #     stream=True,
#         #     stop=["</s>", "<|user|>", "<|assistant|>", "<|system|>"],
#         # ):

#         for tok in client.text_generation(
#             zephyr_prompt,
#             max_new_tokens=max_tokens,
#             temperature=temperature,
#             top_p=top_p,
#             stream=True,
#         ):

#             if tok:
#                 response_text += tok
#                 yield response_text
#     except HfHubHTTPError as e:
#         try:
#             status = e.response.status_code
#         except Exception:
#             status = None
#         if status == 401:
#             yield (
#                 "❌ 401 Unauthorized (text_generation fallback).\n\n"
#                 "Set HF_TOKEN in Space secrets (Settings → Repository secrets)."
#             )
#         else:
#             yield f"[Inference error] {e}"
#     except Exception as e:
#         yield f"[Runtime error] {e}"


# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(
#             value=(
#                 "You are a Chatbot who only answers spiritual questions based "
#                 "on Indian scriptures and declines answering other questions."
#             ),
#             label="System message",
#         ),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )

# if __name__ == "__main__":
#     demo.launch()

# import os
# import gradio as gr
# from huggingface_hub import InferenceClient
# from huggingface_hub.utils import HfHubHTTPError  # correct import for 0.22.x

# # You can override with a Space secret: MODEL_ID=<your preferred model>
# PREFERRED = os.getenv("MODEL_ID", "HuggingFaceH4/zephyr-7b-beta")

# # Accept either token name (matches your other Spaces)
# HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")

# # If your preferred endpoint is down, we’ll try these in order:
# CANDIDATES = [
#     PREFERRED,
#     "google/gemma-2-2b-it",
#     "Qwen/Qwen2.5-1.5B-Instruct",
#     "tiiuae/falcon-7b-instruct",
# ]

# def _build_generic_prompt(system_message, history, user_msg):
#     """
#     Simple, model-agnostic chat prompt (works across many instruct models).
#     """
#     parts = []
#     if system_message:
#         parts.append(f"System: {system_message}")
#     for u, a in (history or []):
#         if u:
#             parts.append(f"User: {u}")
#         if a:
#             parts.append(f"Assistant: {a}")
#     parts.append(f"User: {user_msg}")
#     parts.append("Assistant:")
#     return "\n".join(parts)

# def _try_model(model_id, system_message, history, message, max_tokens, temperature, top_p):
#     """
#     Try streaming via chat_completions; on failure, fall back to text_generation.
#     Returns a generator that yields text chunks.
#     Raises ValueError('NEXT') to indicate “try next model”.
#     """
#     client = InferenceClient(model=model_id, token=HF_TOKEN) if HF_TOKEN else InferenceClient(model=model_id)

#     # 1) Try chat-completions (if supported by the backend)
#     try:
#         msgs = (
#             [{"role": "system", "content": system_message}] if system_message else []
#         )
#         for u, a in (history or []):
#             if u:
#                 msgs.append({"role": "user", "content": u})
#             if a:
#                 msgs.append({"role": "assistant", "content": a})
#         msgs.append({"role": "user", "content": message})

#         def gen_chat():
#             response_text = ""
#             for chunk in client.chat_completion(
#                 messages=msgs,
#                 max_tokens=max_tokens,
#                 temperature=temperature,
#                 top_p=top_p,
#                 stream=True,
#             ):
#                 token = getattr(chunk.choices[0].delta, "content", None)
#                 if token:
#                     response_text += token
#                     yield response_text

#         # sanity probe: start the generator and yield progressively
#         for out in gen_chat():
#             yield out
#         return
#     except HfHubHTTPError as e:
#         status = getattr(e, "response", None).status_code if getattr(e, "response", None) else None
#         if status == 404:
#             # Endpoint not available for this model → try next candidate
#             raise ValueError("NEXT")
#         if status == 401:
#             yield (
#                 "❌ 401 Unauthorized from HF Inference API.\n\n"
#                 "Ensure a read-scoped token is set (HF_TOKEN or HUGGINGFACEHUB_API_TOKEN) "
#                 "in Space secrets, then restart."
#             )
#             return
#         if status == 403:
#             yield (
#                 "❌ 403 Forbidden from HF Inference API.\n\n"
#                 "This model likely requires Inference Providers + billing on your token. "
#                 "Either enable those or switch to a free hosted model using the MODEL_ID secret."
#             )
#             return
#         # fall through to text_generation for other statuses
#     except Exception:
#         # fall through to text_generation
#         pass

#     # 2) Fallback: plain text_generation with a generic prompt
#     prompt = _build_generic_prompt(system_message, history, message)
#     try:
#         response_text = ""
#         for tok in client.text_generation(
#             prompt,
#             max_new_tokens=max_tokens,
#             temperature=temperature,
#             top_p=top_p,
#             stream=True,
#         ):
#             # Manual stop filtering (since huggingface_hub==0.22.x lacks 'stop' kwarg)
#             if any(s in tok for s in ["</s>", "<|user|>", "<|assistant|>", "<|system|>"]):
#                 break
#             if tok:
#                 response_text += tok
#                 yield response_text
#     except HfHubHTTPError as e:
#         status = getattr(e, "response", None).status_code if getattr(e, "response", None) else None
#         if status == 404:
#             # Endpoint not available for this model → try next candidate
#             raise ValueError("NEXT")
#         if status == 401:
#             yield (
#                 "❌ 401 Unauthorized (text-generation fallback).\n\n"
#                 "Set HF_TOKEN or HUGGINGFACEHUB_API_TOKEN in Space secrets and restart."
#             )
#         elif status == 403:
#             yield (
#                 "❌ 403 Forbidden (text-generation fallback).\n\n"
#                 "Your token lacks 'Use Inference API/Providers' or billing is not enabled. "
#                 "Enable those or use a free hosted model via MODEL_ID."
#             )
#         else:
#             yield f"[Inference error] {e}"
#     except Exception as e:
#         yield f"[Runtime error] {e}"

# def respond(message, history, system_message, max_tokens, temperature, top_p):
#     last_error = None
#     tried = []

#     for model_id in [m for m in CANDIDATES if m]:
#         tried.append(model_id)
#         try:
#             for chunk in _try_model(model_id, system_message, history, message, max_tokens, temperature, top_p):
#                 yield chunk
#             # If we streamed anything without raising, we’re done
#             return
#         except ValueError as ve:
#             if str(ve) == "NEXT":
#                 last_error = f"Model `{model_id}` endpoint unavailable (404)."
#                 continue
#             else:
#                 last_error = str(ve)
#         except Exception as e:
#             last_error = f"Unexpected error on `{model_id}`: {e}"

#     # If we got here, all candidates failed
#     tried_str = " → ".join(tried) if tried else "(none)"
#     yield (
#         "❌ All candidate models failed.\n\n"
#         f"Tried: {tried_str}\n\n"
#         f"Last error: {last_error or 'unknown'}\n\n"
#         "Fixes:\n"
#         "• Set MODEL_ID in Space secrets to a hosted model that’s online (e.g., google/gemma-2-2b-it, Qwen/Qwen2.5-1.5B-Instruct).\n"
#         "• Or enable Inference Providers + billing on your HF token for models served via providers.\n"
#     )

# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(
#             value=("You are a Chatbot who only answers spiritual questions based on Indian scriptures "
#                    "and declines answering other questions."),
#             label="System message",
#         ),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
#     ],
# )

# if __name__ == "__main__":
#     demo.launch(share=True)




import os
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# You can override this via Space secret: MODEL_ID=Qwen/Qwen2-0.5B-Instruct (etc.)
MODEL_ID = os.getenv("MODEL_ID", "TinyLlama/TinyLlama-1.1B-Chat-v1.0")

# Load once at startup
print(f"🔧 Loading local model: {MODEL_ID}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float32,     # CPU-friendly
)
model.eval()

def build_prompt(system_message: str, history, user_msg: str) -> str:
    """Try to use the model's chat template if present; otherwise use a generic prompt."""
    messages = []
    if system_message:
        messages.append({"role": "system", "content": system_message})
    for u, a in (history or []):
        if u:
            messages.append({"role": "user", "content": u})
        if a:
            messages.append({"role": "assistant", "content": a})
    messages.append({"role": "user", "content": user_msg})

    # Use chat template when available
    try:
        if getattr(tokenizer, "chat_template", None):
            return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    except Exception:
        pass

    # Fallback generic formatting
    parts = []
    if system_message:
        parts.append(f"System: {system_message}")
    for u, a in (history or []):
        if u:
            parts.append(f"User: {u}")
        if a:
            parts.append(f"Assistant: {a}")
    parts.append(f"User: {user_msg}")
    parts.append("Assistant:")
    return "\n".join(parts)

def respond(message, history, system_message, max_tokens, temperature, top_p):
    prompt = build_prompt(system_message, history, message)
    inputs = tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=int(max_tokens),
            do_sample=True,
            temperature=float(temperature),
            top_p=float(top_p),
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )
    # Decode only the newly generated portion
    gen_ids = outputs[0][inputs["input_ids"].shape[1]:]
    text = tokenizer.decode(gen_ids, skip_special_tokens=True)

    # Stream the text in chunks so the UI feels live
    acc = ""
    for i in range(0, len(text), 40):
        acc += text[i:i+40]
        yield acc

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value=("You are a spiritual assistant who only answers spiritual questions based on Indian Hindu scriptures e.g., Bhagvadgita, and politely decline all other questions."),
            label="System message",
        ),
        gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
)

if __name__ == "__main__":
    # share=True gives you a public link automatically
    demo.launch(share=True)

# import os
# import gradio as gr

# # ---- llama.cpp backend (fast CPU) ----
# from llama_cpp import Llama

# # ---- to list files in a repo and pick a GGUF automatically ----
# from huggingface_hub import list_repo_files

# # ----------------- Config -----------------
# # You can override these via Space "Settings → Variables"
# # If MODEL_REPO is set, it's tried first; otherwise we try the CANDIDATE_REPOS below.
# MODEL_REPO = os.getenv("MODEL_REPO", "").strip() or None

# # Known small GGUF chat repos (fast & lightweight). We'll try them in order.
# CANDIDATE_REPOS = [
#     MODEL_REPO,  # user-preferred first (may be None)
#     "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
#     "Qwen/Qwen2-0.5B-Instruct-GGUF",
#     "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
#     "bartowski/Qwen2.5-0.5B-Instruct-GGUF",
# ]

# # Best-to-worst file name patterns to prefer when multiple GGUFs are present.
# PREFERRED_PATTERNS = [
#     "q4_k_m.gguf", "Q4_K_M.gguf",
#     "q4_0.gguf",   "Q4_0.gguf",
#     "q5_k_m.gguf", "Q5_K_M.gguf",
#     ".gguf",  # catch-all
# ]

# # Runtime knobs
# N_THREADS = int(os.getenv("N_THREADS", str(os.cpu_count() or 4)))
# CTX = int(os.getenv("CTX", "2048"))

# SYSTEM_DEFAULT = (
#     "You are a Chatbot who only answers spiritual questions based on Indian scriptures "
#     "and politely decline other questions."
# )

# # --------------- GGUF Picker ---------------
# def pick_repo_and_file():
#     """Return (repo_id, gguf_filename) by scanning candidate repos for a preferred GGUF."""
#     tried = []
#     for repo in [r for r in CANDIDATE_REPOS if r]:  # drop None
#         try:
#             files = list_repo_files(repo)
#         except Exception:
#             tried.append(f"{repo} (list failed)")
#             continue
#         ggufs = [f for f in files if f.lower().endswith(".gguf")]
#         if not ggufs:
#             tried.append(f"{repo} (no .gguf)")
#             continue
#         # pick by pattern preference
#         for pat in PREFERRED_PATTERNS:
#             for f in ggufs:
#                 if pat in f:
#                     return repo, f
#     tried_str = " | ".join(tried) if tried else "(none)"
#     raise RuntimeError(
#         "No GGUF file found in any candidate repo.\n"
#         f"Tried: {tried_str}\n"
#         "Tip: set MODEL_REPO to a GGUF repo like 'Qwen/Qwen2.5-0.5B-Instruct-GGUF' "
#         "or 'TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF'."
#     )

# REPO_ID, FILENAME = pick_repo_and_file()
# print(f"🔧 Loading GGUF from {REPO_ID}/{FILENAME}  |  threads={N_THREADS}, ctx={CTX}")

# llm = Llama.from_pretrained(
#     repo_id=REPO_ID,
#     filename=FILENAME,
#     n_ctx=CTX,
#     n_threads=N_THREADS,
#     n_gpu_layers=0,       # CPU only
#     logits_all=False,
#     verbose=False,
# )

# def respond(message, history, system_message, max_tokens, temperature, top_p):
#     sysmsg = system_message or SYSTEM_DEFAULT
#     msgs = [{"role": "system", "content": sysmsg}]
#     for u, a in (history or []):
#         if u:
#             msgs.append({"role": "user", "content": u})
#         if a:
#             msgs.append({"role": "assistant", "content": a})
#     msgs.append({"role": "user", "content": message})

#     stream = llm.create_chat_completion(
#         messages=msgs,
#         temperature=float(temperature),
#         top_p=float(top_p),
#         max_tokens=int(max_tokens),
#         stream=True,
#     )
#     acc = ""
#     for chunk in stream:
#         delta = chunk["choices"][0]["delta"]
#         tok = delta.get("content", "")
#         if tok:
#             acc += tok
#             yield acc

# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value=SYSTEM_DEFAULT, label="System message"),
#         gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
#     ],
# )

# if __name__ == "__main__":
#     print(f"🧵 Threads: {N_THREADS}")
#     demo.launch(share=True)