Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
50 |
additional_inputs=[
|
51 |
-
gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
53 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
gr.Slider(
|
@@ -59,69 +212,57 @@ demo = gr.ChatInterface(
|
|
59 |
label="Top-p (nucleus sampling)",
|
60 |
),
|
61 |
],
|
62 |
-
|
63 |
)
|
64 |
|
65 |
-
|
66 |
if __name__ == "__main__":
|
67 |
demo.launch()
|
68 |
|
|
|
69 |
# import os
|
70 |
# import gradio as gr
|
71 |
# from huggingface_hub import InferenceClient
|
72 |
-
# from huggingface_hub.utils import HfHubHTTPError
|
73 |
-
|
74 |
-
# MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
|
75 |
-
# HF_TOKEN = os.getenv("HF_TOKEN") # β οΈ set this in Spaces β Settings β Secrets
|
76 |
|
77 |
-
#
|
|
|
78 |
|
|
|
|
|
79 |
|
|
|
80 |
|
81 |
-
# def
|
|
|
|
|
|
|
82 |
# parts = []
|
83 |
# if system_message:
|
84 |
-
# parts.append(f"
|
85 |
# for u, a in (history or []):
|
86 |
# if u:
|
87 |
-
# parts.append(f"
|
88 |
# if a:
|
89 |
-
# parts.append(f"
|
90 |
-
# parts.append(f"
|
|
|
91 |
# return "\n".join(parts)
|
92 |
|
93 |
-
|
94 |
# def respond(message, history, system_message, max_tokens, temperature, top_p):
|
95 |
-
# #
|
96 |
-
# if not HF_TOKEN:
|
97 |
-
# yield (
|
98 |
-
# "β οΈ Missing HF_TOKEN.\n\n"
|
99 |
-
# "Set a Hugging Face access token in your Space:\n"
|
100 |
-
# "Settings β Repository secrets β Add secret β Name: HF_TOKEN, Value: <your token>\n"
|
101 |
-
# "Token needs at least 'read' scope."
|
102 |
-
# )
|
103 |
-
# return
|
104 |
-
|
105 |
-
# # Try OpenAI-like chat completion first
|
106 |
# try:
|
107 |
# response_text = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# for chunk in client.chat_completion(
|
109 |
-
# messages=
|
110 |
-
# [{"role": "system", "content": system_message}] if system_message else []
|
111 |
-
# )
|
112 |
-
# + [
|
113 |
-
# msg
|
114 |
-
# for pair in (history or [])
|
115 |
-
# for msg in (
|
116 |
-
# [{"role": "user", "content": pair[0]}] if pair and pair[0] else []
|
117 |
-
# )
|
118 |
-
# + (
|
119 |
-
# [{"role": "assistant", "content": pair[1]}]
|
120 |
-
# if pair and len(pair) > 1 and pair[1]
|
121 |
-
# else []
|
122 |
-
# )
|
123 |
-
# ]
|
124 |
-
# + [{"role": "user", "content": message}],
|
125 |
# max_tokens=max_tokens,
|
126 |
# temperature=temperature,
|
127 |
# top_p=top_p,
|
@@ -133,91 +274,90 @@ if __name__ == "__main__":
|
|
133 |
# yield response_text
|
134 |
# return
|
135 |
# except HfHubHTTPError as e:
|
136 |
-
#
|
137 |
-
# try:
|
138 |
-
# status = e.response.status_code
|
139 |
-
# except Exception:
|
140 |
-
# status = None
|
141 |
# if status == 401:
|
|
|
142 |
# yield (
|
143 |
-
# "β 401 Unauthorized from
|
144 |
-
# "
|
145 |
-
# "1) Create a token at https://huggingface.co/settings/tokens with at least 'read' scope.\n"
|
146 |
-
# "2) In your Space, go to Settings β Repository secrets β Add secret\n"
|
147 |
-
# " Name: HF_TOKEN, Value: <your token>\n"
|
148 |
-
# "3) Restart the Space.\n"
|
149 |
# )
|
150 |
# return
|
151 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
# except Exception:
|
153 |
-
# pass
|
154 |
|
155 |
-
# # Fallback:
|
156 |
-
#
|
157 |
# try:
|
158 |
# response_text = ""
|
159 |
-
# # for tok in client.text_generation(
|
160 |
-
# # zephyr_prompt,
|
161 |
-
# # max_new_tokens=max_tokens,
|
162 |
-
# # temperature=temperature,
|
163 |
-
# # top_p=top_p,
|
164 |
-
# # stream=True,
|
165 |
-
# # stop=["</s>", "<|user|>", "<|assistant|>", "<|system|>"],
|
166 |
-
# # ):
|
167 |
-
|
168 |
# for tok in client.text_generation(
|
169 |
-
#
|
170 |
# max_new_tokens=max_tokens,
|
171 |
# temperature=temperature,
|
172 |
# top_p=top_p,
|
173 |
# stream=True,
|
174 |
# ):
|
175 |
-
|
|
|
|
|
176 |
# if tok:
|
177 |
# response_text += tok
|
178 |
# yield response_text
|
179 |
# except HfHubHTTPError as e:
|
180 |
-
#
|
181 |
-
# status = e.response.status_code
|
182 |
-
# except Exception:
|
183 |
-
# status = None
|
184 |
# if status == 401:
|
|
|
185 |
# yield (
|
186 |
# "β 401 Unauthorized (text_generation fallback).\n\n"
|
187 |
-
# "Set
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
# )
|
189 |
# else:
|
190 |
# yield f"[Inference error] {e}"
|
191 |
# except Exception as e:
|
192 |
# yield f"[Runtime error] {e}"
|
193 |
|
194 |
-
|
195 |
# demo = gr.ChatInterface(
|
196 |
# respond,
|
197 |
# additional_inputs=[
|
198 |
# gr.Textbox(
|
199 |
-
# value=(
|
200 |
-
#
|
201 |
-
# "on Indian scriptures and declines answering other questions."
|
202 |
-
# ),
|
203 |
# label="System message",
|
204 |
# ),
|
205 |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
206 |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
207 |
-
# gr.Slider(
|
208 |
-
# minimum=0.1,
|
209 |
-
# maximum=1.0,
|
210 |
-
# value=0.95,
|
211 |
-
# step=0.05,
|
212 |
-
# label="Top-p (nucleus sampling)",
|
213 |
-
# ),
|
214 |
# ],
|
215 |
# )
|
216 |
|
217 |
# if __name__ == "__main__":
|
218 |
-
# demo.launch()
|
219 |
-
|
220 |
-
|
221 |
|
222 |
|
223 |
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
# import spaces
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
# """
|
8 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
9 |
+
# """
|
10 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
+
|
12 |
+
# @spaces.GPU
|
13 |
+
# def respond(
|
14 |
+
# message,
|
15 |
+
# history: list[tuple[str, str]],
|
16 |
+
# system_message,
|
17 |
+
# max_tokens,
|
18 |
+
# temperature,
|
19 |
+
# top_p,
|
20 |
+
# ):
|
21 |
+
# messages = [{"role": "system", "content": system_message}]
|
22 |
+
|
23 |
+
# for val in history:
|
24 |
+
# if val[0]:
|
25 |
+
# messages.append({"role": "user", "content": val[0]})
|
26 |
+
# if val[1]:
|
27 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
28 |
+
|
29 |
+
# messages.append({"role": "user", "content": message})
|
30 |
+
|
31 |
+
# response = ""
|
32 |
+
|
33 |
+
# for message in client.chat_completion(
|
34 |
+
# messages,
|
35 |
+
# max_tokens=max_tokens,
|
36 |
+
# stream=True,
|
37 |
+
# temperature=temperature,
|
38 |
+
# top_p=top_p,
|
39 |
+
# ):
|
40 |
+
# token = message.choices[0].delta.content
|
41 |
+
|
42 |
+
# response += token
|
43 |
+
# yield response
|
44 |
+
|
45 |
+
# """
|
46 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
47 |
+
# """
|
48 |
+
# demo = gr.ChatInterface(
|
49 |
+
# respond,
|
50 |
+
# additional_inputs=[
|
51 |
+
# gr.Textbox(value="You are a Chatbot who only answers spiritual questions based on Indian scriptures and declines answering other questions.", label="System message"),
|
52 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
53 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
+
# gr.Slider(
|
55 |
+
# minimum=0.1,
|
56 |
+
# maximum=1.0,
|
57 |
+
# value=0.95,
|
58 |
+
# step=0.05,
|
59 |
+
# label="Top-p (nucleus sampling)",
|
60 |
+
# ),
|
61 |
+
# ],
|
62 |
+
|
63 |
+
# )
|
64 |
+
|
65 |
+
|
66 |
+
# if __name__ == "__main__":
|
67 |
+
# demo.launch()
|
68 |
+
|
69 |
+
import os
|
70 |
import gradio as gr
|
71 |
from huggingface_hub import InferenceClient
|
72 |
+
from huggingface_hub.utils import HfHubHTTPError
|
73 |
+
|
74 |
+
MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
|
75 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # β οΈ set this in Spaces β Settings β Secrets
|
76 |
+
|
77 |
+
client = InferenceClient(model=MODEL_ID, token=HF_TOKEN)
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def _build_zephyr_prompt(system_message: str, history, user_msg: str) -> str:
|
82 |
+
parts = []
|
83 |
+
if system_message:
|
84 |
+
parts.append(f"<|system|>\n{system_message}\n</s>")
|
85 |
+
for u, a in (history or []):
|
86 |
+
if u:
|
87 |
+
parts.append(f"<|user|>\n{u}\n</s>")
|
88 |
+
if a:
|
89 |
+
parts.append(f"<|assistant|>\n{a}\n</s>")
|
90 |
+
parts.append(f"<|user|>\n{user_msg}\n</s>\n<|assistant|>\n")
|
91 |
+
return "\n".join(parts)
|
92 |
+
|
93 |
+
|
94 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
95 |
+
# Early guardrails for missing token
|
96 |
+
if not HF_TOKEN:
|
97 |
+
yield (
|
98 |
+
"β οΈ Missing HF_TOKEN.\n\n"
|
99 |
+
"Set a Hugging Face access token in your Space:\n"
|
100 |
+
"Settings β Repository secrets β Add secret β Name: HF_TOKEN, Value: <your token>\n"
|
101 |
+
"Token needs at least 'read' scope."
|
102 |
+
)
|
103 |
+
return
|
104 |
+
|
105 |
+
# Try OpenAI-like chat completion first
|
106 |
+
try:
|
107 |
+
response_text = ""
|
108 |
+
for chunk in client.chat_completion(
|
109 |
+
messages=(
|
110 |
+
[{"role": "system", "content": system_message}] if system_message else []
|
111 |
+
)
|
112 |
+
+ [
|
113 |
+
msg
|
114 |
+
for pair in (history or [])
|
115 |
+
for msg in (
|
116 |
+
[{"role": "user", "content": pair[0]}] if pair and pair[0] else []
|
117 |
+
)
|
118 |
+
+ (
|
119 |
+
[{"role": "assistant", "content": pair[1]}]
|
120 |
+
if pair and len(pair) > 1 and pair[1]
|
121 |
+
else []
|
122 |
+
)
|
123 |
+
]
|
124 |
+
+ [{"role": "user", "content": message}],
|
125 |
+
max_tokens=max_tokens,
|
126 |
+
temperature=temperature,
|
127 |
+
top_p=top_p,
|
128 |
+
stream=True,
|
129 |
+
):
|
130 |
+
token = getattr(chunk.choices[0].delta, "content", None)
|
131 |
+
if token:
|
132 |
+
response_text += token
|
133 |
+
yield response_text
|
134 |
+
return
|
135 |
+
except HfHubHTTPError as e:
|
136 |
+
# Handle 401 explicitly with helpful guidance
|
137 |
+
try:
|
138 |
+
status = e.response.status_code
|
139 |
+
except Exception:
|
140 |
+
status = None
|
141 |
+
if status == 401:
|
142 |
+
yield (
|
143 |
+
"β 401 Unauthorized from Hugging Face Inference API.\n\n"
|
144 |
+
"Fix:\n"
|
145 |
+
"1) Create a token at https://huggingface.co/settings/tokens with at least 'read' scope.\n"
|
146 |
+
"2) In your Space, go to Settings β Repository secrets β Add secret\n"
|
147 |
+
" Name: HF_TOKEN, Value: <your token>\n"
|
148 |
+
"3) Restart the Space.\n"
|
149 |
+
)
|
150 |
+
return
|
151 |
+
# Otherwise drop to fallback
|
152 |
+
except Exception:
|
153 |
+
pass
|
154 |
+
|
155 |
+
# Fallback: raw text_generation with Zephyr chat format
|
156 |
+
zephyr_prompt = _build_zephyr_prompt(system_message, history, message)
|
157 |
+
try:
|
158 |
+
response_text = ""
|
159 |
+
# for tok in client.text_generation(
|
160 |
+
# zephyr_prompt,
|
161 |
+
# max_new_tokens=max_tokens,
|
162 |
+
# temperature=temperature,
|
163 |
+
# top_p=top_p,
|
164 |
+
# stream=True,
|
165 |
+
# stop=["</s>", "<|user|>", "<|assistant|>", "<|system|>"],
|
166 |
+
# ):
|
167 |
+
|
168 |
+
for tok in client.text_generation(
|
169 |
+
zephyr_prompt,
|
170 |
+
max_new_tokens=max_tokens,
|
171 |
+
temperature=temperature,
|
172 |
+
top_p=top_p,
|
173 |
+
stream=True,
|
174 |
+
):
|
175 |
+
|
176 |
+
if tok:
|
177 |
+
response_text += tok
|
178 |
+
yield response_text
|
179 |
+
except HfHubHTTPError as e:
|
180 |
+
try:
|
181 |
+
status = e.response.status_code
|
182 |
+
except Exception:
|
183 |
+
status = None
|
184 |
+
if status == 401:
|
185 |
+
yield (
|
186 |
+
"β 401 Unauthorized (text_generation fallback).\n\n"
|
187 |
+
"Set HF_TOKEN in Space secrets (Settings β Repository secrets)."
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
yield f"[Inference error] {e}"
|
191 |
+
except Exception as e:
|
192 |
+
yield f"[Runtime error] {e}"
|
193 |
+
|
194 |
+
|
195 |
demo = gr.ChatInterface(
|
196 |
respond,
|
197 |
additional_inputs=[
|
198 |
+
gr.Textbox(
|
199 |
+
value=(
|
200 |
+
"You are a Chatbot who only answers spiritual questions based "
|
201 |
+
"on Indian scriptures and declines answering other questions."
|
202 |
+
),
|
203 |
+
label="System message",
|
204 |
+
),
|
205 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
206 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
207 |
gr.Slider(
|
|
|
212 |
label="Top-p (nucleus sampling)",
|
213 |
),
|
214 |
],
|
|
|
215 |
)
|
216 |
|
|
|
217 |
if __name__ == "__main__":
|
218 |
demo.launch()
|
219 |
|
220 |
+
|
221 |
# import os
|
222 |
# import gradio as gr
|
223 |
# from huggingface_hub import InferenceClient
|
224 |
+
# from huggingface_hub.utils import HfHubHTTPError # correct import for 0.22.2
|
|
|
|
|
|
|
225 |
|
226 |
+
# # β
You can override this in the Space secrets: MODEL_ID=google/gemma-2-2b-it (or Qwen/Qwen2...)
|
227 |
+
# MODEL_ID = os.getenv("MODEL_ID", "microsoft/Phi-3-mini-4k-instruct")
|
228 |
|
229 |
+
# # Accept either token name (matches your other Spaces)
|
230 |
+
# HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
231 |
|
232 |
+
# client = InferenceClient(model=MODEL_ID, token=HF_TOKEN) if HF_TOKEN else InferenceClient(model=MODEL_ID)
|
233 |
|
234 |
+
# def _build_generic_prompt(system_message: str, history, user_msg: str) -> str:
|
235 |
+
# """
|
236 |
+
# Generic chat-style prompt that works across most instruct-tuned models.
|
237 |
+
# """
|
238 |
# parts = []
|
239 |
# if system_message:
|
240 |
+
# parts.append(f"System: {system_message}")
|
241 |
# for u, a in (history or []):
|
242 |
# if u:
|
243 |
+
# parts.append(f"User: {u}")
|
244 |
# if a:
|
245 |
+
# parts.append(f"Assistant: {a}")
|
246 |
+
# parts.append(f"User: {user_msg}")
|
247 |
+
# parts.append("Assistant:")
|
248 |
# return "\n".join(parts)
|
249 |
|
|
|
250 |
# def respond(message, history, system_message, max_tokens, temperature, top_p):
|
251 |
+
# # Try chat-completions first (if backend supports it)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
# try:
|
253 |
# response_text = ""
|
254 |
+
# msgs = (
|
255 |
+
# [{"role": "system", "content": system_message}] if system_message else []
|
256 |
+
# )
|
257 |
+
# for u, a in (history or []):
|
258 |
+
# if u:
|
259 |
+
# msgs.append({"role": "user", "content": u})
|
260 |
+
# if a:
|
261 |
+
# msgs.append({"role": "assistant", "content": a})
|
262 |
+
# msgs.append({"role": "user", "content": message})
|
263 |
+
|
264 |
# for chunk in client.chat_completion(
|
265 |
+
# messages=msgs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
# max_tokens=max_tokens,
|
267 |
# temperature=temperature,
|
268 |
# top_p=top_p,
|
|
|
274 |
# yield response_text
|
275 |
# return
|
276 |
# except HfHubHTTPError as e:
|
277 |
+
# status = getattr(e, "response", None).status_code if getattr(e, "response", None) else None
|
|
|
|
|
|
|
|
|
278 |
# if status == 401:
|
279 |
+
# which = "HF_TOKEN or HUGGINGFACEHUB_API_TOKEN"
|
280 |
# yield (
|
281 |
+
# "β 401 Unauthorized from HF Inference API.\n\n"
|
282 |
+
# f"Add a read-scoped token as **{which}** and restart."
|
|
|
|
|
|
|
|
|
283 |
# )
|
284 |
# return
|
285 |
+
# if status == 403:
|
286 |
+
# yield (
|
287 |
+
# "β 403 Forbidden from HF Inference API.\n\n"
|
288 |
+
# "Model may require Inference Providers permissions & billing. "
|
289 |
+
# "Either enable those for your token or switch MODEL_ID to a free hosted model."
|
290 |
+
# )
|
291 |
+
# return
|
292 |
+
# if status == 404:
|
293 |
+
# yield (
|
294 |
+
# f"β 404 Not Found for model `{MODEL_ID}` via chat-completions.\n\n"
|
295 |
+
# "The serverless endpoint is likely unavailable. "
|
296 |
+
# "Set MODEL_ID to a hosted model (e.g., microsoft/Phi-3-mini-4k-instruct, "
|
297 |
+
# "google/gemma-2-2b-it, Qwen/Qwen2-1.5B-Instruct) in Space secrets and restart."
|
298 |
+
# )
|
299 |
+
# # fall through to fallback too
|
300 |
# except Exception:
|
301 |
+
# pass # fall through to fallback
|
302 |
|
303 |
+
# # Fallback: plain text_generation with a generic prompt
|
304 |
+
# prompt = _build_generic_prompt(system_message, history, message)
|
305 |
# try:
|
306 |
# response_text = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
# for tok in client.text_generation(
|
308 |
+
# prompt,
|
309 |
# max_new_tokens=max_tokens,
|
310 |
# temperature=temperature,
|
311 |
# top_p=top_p,
|
312 |
# stream=True,
|
313 |
# ):
|
314 |
+
# # Manual stop filtering (since 0.22.2 lacks 'stop' kwarg)
|
315 |
+
# if any(s in tok for s in ["</s>", "<|user|>", "<|assistant|>", "<|system|>"]):
|
316 |
+
# break
|
317 |
# if tok:
|
318 |
# response_text += tok
|
319 |
# yield response_text
|
320 |
# except HfHubHTTPError as e:
|
321 |
+
# status = getattr(e, "response", None).status_code if getattr(e, "response", None) else None
|
|
|
|
|
|
|
322 |
# if status == 401:
|
323 |
+
# which = "HF_TOKEN or HUGGINGFACEHUB_API_TOKEN"
|
324 |
# yield (
|
325 |
# "β 401 Unauthorized (text_generation fallback).\n\n"
|
326 |
+
# f"Set **{which}** in Space secrets and restart."
|
327 |
+
# )
|
328 |
+
# elif status == 403:
|
329 |
+
# yield (
|
330 |
+
# "β 403 Forbidden (text_generation fallback).\n\n"
|
331 |
+
# "Your token lacks 'Use Inference API/Providers' or billing is not enabled. "
|
332 |
+
# "Either grant those permissions & restart, or set MODEL_ID to a free hosted model."
|
333 |
+
# )
|
334 |
+
# elif status == 404:
|
335 |
+
# yield (
|
336 |
+
# f"β 404 Not Found for model `{MODEL_ID}` via text-generation.\n\n"
|
337 |
+
# "Switch MODEL_ID to a hosted model (e.g., microsoft/Phi-3-mini-4k-instruct, "
|
338 |
+
# "google/gemma-2-2b-it, Qwen/Qwen2-1.5B-Instruct) and restart."
|
339 |
# )
|
340 |
# else:
|
341 |
# yield f"[Inference error] {e}"
|
342 |
# except Exception as e:
|
343 |
# yield f"[Runtime error] {e}"
|
344 |
|
|
|
345 |
# demo = gr.ChatInterface(
|
346 |
# respond,
|
347 |
# additional_inputs=[
|
348 |
# gr.Textbox(
|
349 |
+
# value=("You are a Chatbot who only answers spiritual questions based on Indian scriptures "
|
350 |
+
# "and declines answering other questions."),
|
|
|
|
|
351 |
# label="System message",
|
352 |
# ),
|
353 |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
354 |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
355 |
+
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
# ],
|
357 |
# )
|
358 |
|
359 |
# if __name__ == "__main__":
|
360 |
+
# demo.launch(share=True)
|
|
|
|
|
361 |
|
362 |
|
363 |
|