Spaces:
Configuration error
Configuration error
import importlib | |
import streamlit as st | |
import torch | |
import cv2 | |
import numpy as np | |
import PIL | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import trange | |
import io, os | |
from torch import autocast | |
from einops import rearrange, repeat | |
from torchvision.utils import make_grid | |
from pytorch_lightning import seed_everything | |
from contextlib import nullcontext | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
from ldm.models.diffusion.dpm_solver import DPMSolverSampler | |
torch.set_grad_enabled(False) | |
PROMPTS_ROOT = "scripts/prompts/" | |
SAVE_PATH = "outputs/demo/stable-unclip/" | |
VERSION2SPECS = { | |
"Stable unCLIP-L": {"H": 768, "W": 768, "C": 4, "f": 8}, | |
"Stable unOpenCLIP-H": {"H": 768, "W": 768, "C": 4, "f": 8}, | |
"Full Karlo": {} | |
} | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
importlib.invalidate_caches() | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def instantiate_from_config(config): | |
if not "target" in config: | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def get_interactive_image(key=None): | |
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key) | |
if image is not None: | |
image = Image.open(image) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
return image | |
def load_img(display=True, key=None): | |
image = get_interactive_image(key=key) | |
if display: | |
st.image(image) | |
w, h = image.size | |
print(f"loaded input image of size ({w}, {h})") | |
w, h = map(lambda x: x - x % 64, (w, h)) | |
image = image.resize((w, h), resample=PIL.Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2. * image - 1. | |
def get_init_img(batch_size=1, key=None): | |
init_image = load_img(key=key).cuda() | |
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) | |
return init_image | |
def sample( | |
model, | |
prompt, | |
n_runs=3, | |
n_samples=2, | |
H=512, | |
W=512, | |
C=4, | |
f=8, | |
scale=10.0, | |
ddim_steps=50, | |
ddim_eta=0.0, | |
callback=None, | |
skip_single_save=False, | |
save_grid=True, | |
ucg_schedule=None, | |
negative_prompt="", | |
adm_cond=None, | |
adm_uc=None, | |
use_full_precision=False, | |
only_adm_cond=False | |
): | |
batch_size = n_samples | |
precision_scope = autocast if not use_full_precision else nullcontext | |
# decoderscope = autocast if not use_full_precision else nullcontext | |
if use_full_precision: st.warning(f"Running {model.__class__.__name__} at full precision.") | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
prompts = batch_size * prompt | |
outputs = st.empty() | |
with precision_scope("cuda"): | |
with model.ema_scope(): | |
all_samples = list() | |
for n in trange(n_runs, desc="Sampling"): | |
shape = [C, H // f, W // f] | |
if not only_adm_cond: | |
uc = None | |
if scale != 1.0: | |
uc = model.get_learned_conditioning(batch_size * [negative_prompt]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
c = model.get_learned_conditioning(prompts) | |
if adm_cond is not None: | |
if adm_cond.shape[0] == 1: | |
adm_cond = repeat(adm_cond, '1 ... -> b ...', b=batch_size) | |
if adm_uc is None: | |
st.warning("Not guiding via c_adm") | |
adm_uc = adm_cond | |
else: | |
if adm_uc.shape[0] == 1: | |
adm_uc = repeat(adm_uc, '1 ... -> b ...', b=batch_size) | |
if not only_adm_cond: | |
c = {"c_crossattn": [c], "c_adm": adm_cond} | |
uc = {"c_crossattn": [uc], "c_adm": adm_uc} | |
else: | |
c = adm_cond | |
uc = adm_uc | |
samples_ddim, _ = sampler.sample(S=ddim_steps, | |
conditioning=c, | |
batch_size=batch_size, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=uc, | |
eta=ddim_eta, | |
x_T=None, | |
callback=callback, | |
ucg_schedule=ucg_schedule | |
) | |
x_samples = model.decode_first_stage(samples_ddim) | |
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) | |
if not skip_single_save: | |
base_count = len(os.listdir(os.path.join(SAVE_PATH, "samples"))) | |
for x_sample in x_samples: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
Image.fromarray(x_sample.astype(np.uint8)).save( | |
os.path.join(SAVE_PATH, "samples", f"{base_count:09}.png")) | |
base_count += 1 | |
all_samples.append(x_samples) | |
# get grid of all samples | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n h) (b w) c') | |
outputs.image(grid.cpu().numpy()) | |
# additionally, save grid | |
grid = Image.fromarray((255. * grid.cpu().numpy()).astype(np.uint8)) | |
if save_grid: | |
grid_count = len(os.listdir(SAVE_PATH)) - 1 | |
grid.save(os.path.join(SAVE_PATH, f'grid-{grid_count:06}.png')) | |
return x_samples | |
def make_oscillating_guidance_schedule(num_steps, max_weight=15., min_weight=1.): | |
schedule = list() | |
for i in range(num_steps): | |
if float(i / num_steps) < 0.1: | |
schedule.append(max_weight) | |
elif i % 2 == 0: | |
schedule.append(min_weight) | |
else: | |
schedule.append(max_weight) | |
print(f"OSCILLATING GUIDANCE SCHEDULE: \n {schedule}") | |
return schedule | |
def torch2np(x): | |
x = ((x + 1.0) * 127.5).clamp(0, 255).to(dtype=torch.uint8) | |
x = x.permute(0, 2, 3, 1).detach().cpu().numpy() | |
return x | |
def init(version="Stable unCLIP-L", load_karlo_prior=False): | |
state = dict() | |
if not "model" in state: | |
if version == "Stable unCLIP-L": | |
config = "configs/stable-diffusion/v2-1-stable-unclip-l-inference.yaml" | |
ckpt = "checkpoints/sd21-unclip-l.ckpt" | |
elif version == "Stable unOpenCLIP-H": | |
config = "configs/stable-diffusion/v2-1-stable-unclip-h-inference.yaml" | |
ckpt = "checkpoints/sd21-unclip-h.ckpt" | |
elif version == "Full Karlo": | |
from ldm.modules.karlo.kakao.sampler import T2ISampler | |
st.info("Loading full KARLO..") | |
karlo = T2ISampler.from_pretrained( | |
root_dir="checkpoints/karlo_models", | |
clip_model_path="ViT-L-14.pt", | |
clip_stat_path="ViT-L-14_stats.th", | |
sampling_type="default", | |
) | |
state["karlo_prior"] = karlo | |
state["msg"] = "loaded full Karlo" | |
return state | |
else: | |
raise ValueError(f"version {version} unknown!") | |
config = OmegaConf.load(config) | |
model, msg = load_model_from_config(config, ckpt, vae_sd=None) | |
state["msg"] = msg | |
if load_karlo_prior: | |
from ldm.modules.karlo.kakao.sampler import PriorSampler | |
st.info("Loading KARLO CLIP prior...") | |
karlo_prior = PriorSampler.from_pretrained( | |
root_dir="checkpoints/karlo_models", | |
clip_model_path="ViT-L-14.pt", | |
clip_stat_path="ViT-L-14_stats.th", | |
sampling_type="default", | |
) | |
state["karlo_prior"] = karlo_prior | |
state["model"] = model | |
state["ckpt"] = ckpt | |
state["config"] = config | |
return state | |
def load_model_from_config(config, ckpt, verbose=False, vae_sd=None): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
msg = None | |
if "global_step" in pl_sd: | |
msg = f"This is global step {pl_sd['global_step']}. " | |
if "model_ema.num_updates" in pl_sd["state_dict"]: | |
msg += f"And we got {pl_sd['state_dict']['model_ema.num_updates']} EMA updates." | |
global_step = pl_sd.get("global_step", "?") | |
sd = pl_sd["state_dict"] | |
if vae_sd is not None: | |
for k in sd.keys(): | |
if "first_stage" in k: | |
sd[k] = vae_sd[k[len("first_stage_model."):]] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model.cuda() | |
model.eval() | |
print(f"Loaded global step {global_step}") | |
return model, msg | |
if __name__ == "__main__": | |
st.title("Stable unCLIP") | |
mode = "txt2img" | |
version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0) | |
use_karlo_prior = version in ["Stable unCLIP-L"] and st.checkbox("Use KARLO prior", False) | |
state = init(version=version, load_karlo_prior=use_karlo_prior) | |
prompt = st.text_input("Prompt", "a professional photograph") | |
negative_prompt = st.text_input("Negative Prompt", "") | |
scale = st.number_input("cfg-scale", value=10., min_value=-100., max_value=100.) | |
number_rows = st.number_input("num rows", value=2, min_value=1, max_value=10) | |
number_cols = st.number_input("num cols", value=2, min_value=1, max_value=10) | |
steps = st.sidebar.number_input("steps", value=20, min_value=1, max_value=1000) | |
eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.) | |
force_full_precision = st.sidebar.checkbox("Force FP32", False) # TODO: check if/where things break. | |
if version != "Full Karlo": | |
H = st.sidebar.number_input("H", value=VERSION2SPECS[version]["H"], min_value=64, max_value=2048) | |
W = st.sidebar.number_input("W", value=VERSION2SPECS[version]["W"], min_value=64, max_value=2048) | |
C = VERSION2SPECS[version]["C"] | |
f = VERSION2SPECS[version]["f"] | |
SAVE_PATH = os.path.join(SAVE_PATH, version) | |
os.makedirs(os.path.join(SAVE_PATH, "samples"), exist_ok=True) | |
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9)) | |
seed_everything(seed) | |
ucg_schedule = None | |
sampler = st.sidebar.selectbox("Sampler", ["DDIM", "DPM"], 0) | |
if version == "Full Karlo": | |
pass | |
else: | |
if sampler == "DPM": | |
sampler = DPMSolverSampler(state["model"]) | |
elif sampler == "DDIM": | |
sampler = DDIMSampler(state["model"]) | |
else: | |
raise ValueError(f"unknown sampler {sampler}!") | |
adm_cond, adm_uc = None, None | |
if use_karlo_prior: | |
# uses the prior | |
karlo_sampler = state["karlo_prior"] | |
noise_level = None | |
if state["model"].noise_augmentor is not None: | |
noise_level = st.number_input("Noise Augmentation for CLIP embeddings", min_value=0, | |
max_value=state["model"].noise_augmentor.max_noise_level - 1, value=0) | |
with torch.no_grad(): | |
karlo_prediction = iter( | |
karlo_sampler( | |
prompt=prompt, | |
bsz=number_cols, | |
progressive_mode="final", | |
) | |
).__next__() | |
adm_cond = karlo_prediction | |
if noise_level is not None: | |
c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat( | |
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols)) | |
adm_cond = torch.cat((c_adm, noise_level_emb), 1) | |
adm_uc = torch.zeros_like(adm_cond) | |
elif version == "Full Karlo": | |
pass | |
else: | |
num_inputs = st.number_input("Number of Input Images", 1) | |
def make_conditionings_from_input(num=1, key=None): | |
init_img = get_init_img(batch_size=number_cols, key=key) | |
with torch.no_grad(): | |
adm_cond = state["model"].embedder(init_img) | |
weight = st.slider(f"Weight for Input {num}", min_value=-10., max_value=10., value=1.) | |
if state["model"].noise_augmentor is not None: | |
noise_level = st.number_input(f"Noise Augmentation for CLIP embedding of input #{num}", min_value=0, | |
max_value=state["model"].noise_augmentor.max_noise_level - 1, | |
value=0, ) | |
c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat( | |
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols)) | |
adm_cond = torch.cat((c_adm, noise_level_emb), 1) * weight | |
adm_uc = torch.zeros_like(adm_cond) | |
return adm_cond, adm_uc, weight | |
adm_inputs = list() | |
weights = list() | |
for n in range(num_inputs): | |
adm_cond, adm_uc, w = make_conditionings_from_input(num=n + 1, key=n) | |
weights.append(w) | |
adm_inputs.append(adm_cond) | |
adm_cond = torch.stack(adm_inputs).sum(0) / sum(weights) | |
if num_inputs > 1: | |
if st.checkbox("Apply Noise to Embedding Mix", True): | |
noise_level = st.number_input(f"Noise Augmentation for averaged CLIP embeddings", min_value=0, | |
max_value=state["model"].noise_augmentor.max_noise_level - 1, value=50, ) | |
c_adm, noise_level_emb = state["model"].noise_augmentor( | |
adm_cond[:, :state["model"].noise_augmentor.time_embed.dim], | |
noise_level=repeat( | |
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols)) | |
adm_cond = torch.cat((c_adm, noise_level_emb), 1) | |
if st.button("Sample"): | |
print("running prompt:", prompt) | |
st.text("Sampling") | |
t_progress = st.progress(0) | |
result = st.empty() | |
def t_callback(t): | |
t_progress.progress(min((t + 1) / steps, 1.)) | |
if version == "Full Karlo": | |
outputs = st.empty() | |
karlo_sampler = state["karlo_prior"] | |
all_samples = list() | |
with torch.no_grad(): | |
for _ in range(number_rows): | |
karlo_prediction = iter( | |
karlo_sampler( | |
prompt=prompt, | |
bsz=number_cols, | |
progressive_mode="final", | |
) | |
).__next__() | |
all_samples.append(karlo_prediction) | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n h) (b w) c') | |
outputs.image(grid.cpu().numpy()) | |
else: | |
samples = sample( | |
state["model"], | |
prompt, | |
n_runs=number_rows, | |
n_samples=number_cols, | |
H=H, W=W, C=C, f=f, | |
scale=scale, | |
ddim_steps=steps, | |
ddim_eta=eta, | |
callback=t_callback, | |
ucg_schedule=ucg_schedule, | |
negative_prompt=negative_prompt, | |
adm_cond=adm_cond, adm_uc=adm_uc, | |
use_full_precision=force_full_precision, | |
only_adm_cond=False | |
) | |