import importlib
import streamlit as st
import torch
import cv2
import numpy as np
import PIL
from omegaconf import OmegaConf
from PIL import Image
from tqdm import trange
import io, os
from torch import autocast
from einops import rearrange, repeat
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from contextlib import nullcontext

from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler

torch.set_grad_enabled(False)

PROMPTS_ROOT = "scripts/prompts/"
SAVE_PATH = "outputs/demo/stable-unclip/"

VERSION2SPECS = {
    "Stable unCLIP-L": {"H": 768, "W": 768, "C": 4, "f": 8},
    "Stable unOpenCLIP-H": {"H": 768, "W": 768, "C": 4, "f": 8},
    "Full Karlo": {}
}


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    importlib.invalidate_caches()
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def instantiate_from_config(config):
    if not "target" in config:
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def get_interactive_image(key=None):
    image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key)
    if image is not None:
        image = Image.open(image)
        if not image.mode == "RGB":
            image = image.convert("RGB")
        return image


def load_img(display=True, key=None):
    image = get_interactive_image(key=key)
    if display:
        st.image(image)
    w, h = image.size
    print(f"loaded input image of size ({w}, {h})")
    w, h = map(lambda x: x - x % 64, (w, h))
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2. * image - 1.


def get_init_img(batch_size=1, key=None):
    init_image = load_img(key=key).cuda()
    init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
    return init_image


def sample(
        model,
        prompt,
        n_runs=3,
        n_samples=2,
        H=512,
        W=512,
        C=4,
        f=8,
        scale=10.0,
        ddim_steps=50,
        ddim_eta=0.0,
        callback=None,
        skip_single_save=False,
        save_grid=True,
        ucg_schedule=None,
        negative_prompt="",
        adm_cond=None,
        adm_uc=None,
        use_full_precision=False,
        only_adm_cond=False
):
    batch_size = n_samples
    precision_scope = autocast if not use_full_precision else nullcontext
    # decoderscope = autocast if not use_full_precision else nullcontext
    if use_full_precision: st.warning(f"Running {model.__class__.__name__} at full precision.")
    if isinstance(prompt, str):
        prompt = [prompt]
    prompts = batch_size * prompt

    outputs = st.empty()

    with precision_scope("cuda"):
        with model.ema_scope():
            all_samples = list()
            for n in trange(n_runs, desc="Sampling"):
                shape = [C, H // f, W // f]
                if not only_adm_cond:
                    uc = None
                    if scale != 1.0:
                        uc = model.get_learned_conditioning(batch_size * [negative_prompt])
                    if isinstance(prompts, tuple):
                        prompts = list(prompts)
                    c = model.get_learned_conditioning(prompts)

                if adm_cond is not None:
                    if adm_cond.shape[0] == 1:
                        adm_cond = repeat(adm_cond, '1 ... -> b ...', b=batch_size)
                    if adm_uc is None:
                        st.warning("Not guiding via c_adm")
                        adm_uc = adm_cond
                    else:
                        if adm_uc.shape[0] == 1:
                            adm_uc = repeat(adm_uc, '1 ... -> b ...', b=batch_size)
                    if not only_adm_cond:
                        c = {"c_crossattn": [c], "c_adm": adm_cond}
                        uc = {"c_crossattn": [uc], "c_adm": adm_uc}
                    else:
                        c = adm_cond
                        uc = adm_uc
                samples_ddim, _ = sampler.sample(S=ddim_steps,
                                                 conditioning=c,
                                                 batch_size=batch_size,
                                                 shape=shape,
                                                 verbose=False,
                                                 unconditional_guidance_scale=scale,
                                                 unconditional_conditioning=uc,
                                                 eta=ddim_eta,
                                                 x_T=None,
                                                 callback=callback,
                                                 ucg_schedule=ucg_schedule
                                                 )
                x_samples = model.decode_first_stage(samples_ddim)
                x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)

                if not skip_single_save:
                    base_count = len(os.listdir(os.path.join(SAVE_PATH, "samples")))
                    for x_sample in x_samples:
                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                        Image.fromarray(x_sample.astype(np.uint8)).save(
                            os.path.join(SAVE_PATH, "samples", f"{base_count:09}.png"))
                        base_count += 1

                all_samples.append(x_samples)

                # get grid of all samples
                grid = torch.stack(all_samples, 0)
                grid = rearrange(grid, 'n b c h w -> (n h) (b w) c')
                outputs.image(grid.cpu().numpy())

            # additionally, save grid
            grid = Image.fromarray((255. * grid.cpu().numpy()).astype(np.uint8))
            if save_grid:
                grid_count = len(os.listdir(SAVE_PATH)) - 1
                grid.save(os.path.join(SAVE_PATH, f'grid-{grid_count:06}.png'))

    return x_samples


def make_oscillating_guidance_schedule(num_steps, max_weight=15., min_weight=1.):
    schedule = list()
    for i in range(num_steps):
        if float(i / num_steps) < 0.1:
            schedule.append(max_weight)
        elif i % 2 == 0:
            schedule.append(min_weight)
        else:
            schedule.append(max_weight)
    print(f"OSCILLATING GUIDANCE SCHEDULE: \n {schedule}")
    return schedule


def torch2np(x):
    x = ((x + 1.0) * 127.5).clamp(0, 255).to(dtype=torch.uint8)
    x = x.permute(0, 2, 3, 1).detach().cpu().numpy()
    return x


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def init(version="Stable unCLIP-L", load_karlo_prior=False):
    state = dict()
    if not "model" in state:
        if version == "Stable unCLIP-L":
            config = "configs/stable-diffusion/v2-1-stable-unclip-l-inference.yaml"
            ckpt = "checkpoints/sd21-unclip-l.ckpt"

        elif version == "Stable unOpenCLIP-H":
            config = "configs/stable-diffusion/v2-1-stable-unclip-h-inference.yaml"
            ckpt = "checkpoints/sd21-unclip-h.ckpt"

        elif version == "Full Karlo":
            from ldm.modules.karlo.kakao.sampler import T2ISampler
            st.info("Loading full KARLO..")
            karlo = T2ISampler.from_pretrained(
                root_dir="checkpoints/karlo_models",
                clip_model_path="ViT-L-14.pt",
                clip_stat_path="ViT-L-14_stats.th",
                sampling_type="default",
            )
            state["karlo_prior"] = karlo
            state["msg"] = "loaded full Karlo"
            return state
        else:
            raise ValueError(f"version {version} unknown!")

        config = OmegaConf.load(config)
        model, msg = load_model_from_config(config, ckpt, vae_sd=None)
        state["msg"] = msg

        if load_karlo_prior:
            from ldm.modules.karlo.kakao.sampler import PriorSampler
            st.info("Loading KARLO CLIP prior...")
            karlo_prior = PriorSampler.from_pretrained(
                root_dir="checkpoints/karlo_models",
                clip_model_path="ViT-L-14.pt",
                clip_stat_path="ViT-L-14_stats.th",
                sampling_type="default",
            )
            state["karlo_prior"] = karlo_prior
        state["model"] = model
        state["ckpt"] = ckpt
        state["config"] = config
    return state


def load_model_from_config(config, ckpt, verbose=False, vae_sd=None):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    msg = None
    if "global_step" in pl_sd:
        msg = f"This is global step {pl_sd['global_step']}. "
    if "model_ema.num_updates" in pl_sd["state_dict"]:
        msg += f"And we got {pl_sd['state_dict']['model_ema.num_updates']} EMA updates."
    global_step = pl_sd.get("global_step", "?")
    sd = pl_sd["state_dict"]
    if vae_sd is not None:
        for k in sd.keys():
            if "first_stage" in k:
                sd[k] = vae_sd[k[len("first_stage_model."):]]

    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.cuda()
    model.eval()
    print(f"Loaded global step {global_step}")
    return model, msg


if __name__ == "__main__":
    st.title("Stable unCLIP")
    mode = "txt2img"
    version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0)
    use_karlo_prior = version in ["Stable unCLIP-L"] and st.checkbox("Use KARLO prior", False)
    state = init(version=version, load_karlo_prior=use_karlo_prior)
    prompt = st.text_input("Prompt", "a professional photograph")
    negative_prompt = st.text_input("Negative Prompt", "")
    scale = st.number_input("cfg-scale", value=10., min_value=-100., max_value=100.)
    number_rows = st.number_input("num rows", value=2, min_value=1, max_value=10)
    number_cols = st.number_input("num cols", value=2, min_value=1, max_value=10)
    steps = st.sidebar.number_input("steps", value=20, min_value=1, max_value=1000)
    eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
    force_full_precision = st.sidebar.checkbox("Force FP32", False)  # TODO: check if/where things break.
    if version != "Full Karlo":
        H = st.sidebar.number_input("H", value=VERSION2SPECS[version]["H"], min_value=64, max_value=2048)
        W = st.sidebar.number_input("W", value=VERSION2SPECS[version]["W"], min_value=64, max_value=2048)
        C = VERSION2SPECS[version]["C"]
        f = VERSION2SPECS[version]["f"]

    SAVE_PATH = os.path.join(SAVE_PATH, version)
    os.makedirs(os.path.join(SAVE_PATH, "samples"), exist_ok=True)

    seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
    seed_everything(seed)

    ucg_schedule = None
    sampler = st.sidebar.selectbox("Sampler", ["DDIM", "DPM"], 0)
    if version == "Full Karlo":
        pass
    else:
        if sampler == "DPM":
            sampler = DPMSolverSampler(state["model"])
        elif sampler == "DDIM":
            sampler = DDIMSampler(state["model"])
        else:
            raise ValueError(f"unknown sampler {sampler}!")

    adm_cond, adm_uc = None, None
    if use_karlo_prior:
        # uses the prior
        karlo_sampler = state["karlo_prior"]
        noise_level = None
        if state["model"].noise_augmentor is not None:
            noise_level = st.number_input("Noise Augmentation for CLIP embeddings", min_value=0,
                                          max_value=state["model"].noise_augmentor.max_noise_level - 1, value=0)
        with torch.no_grad():
            karlo_prediction = iter(
                karlo_sampler(
                    prompt=prompt,
                    bsz=number_cols,
                    progressive_mode="final",
                )
            ).__next__()
            adm_cond = karlo_prediction
            if noise_level is not None:
                c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat(
                    torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
                adm_cond = torch.cat((c_adm, noise_level_emb), 1)
            adm_uc = torch.zeros_like(adm_cond)
    elif version == "Full Karlo":
        pass
    else:
        num_inputs = st.number_input("Number of Input Images", 1)


        def make_conditionings_from_input(num=1, key=None):
            init_img = get_init_img(batch_size=number_cols, key=key)
            with torch.no_grad():
                adm_cond = state["model"].embedder(init_img)
                weight = st.slider(f"Weight for Input {num}", min_value=-10., max_value=10., value=1.)
                if state["model"].noise_augmentor is not None:
                    noise_level = st.number_input(f"Noise Augmentation for CLIP embedding of input #{num}", min_value=0,
                                                  max_value=state["model"].noise_augmentor.max_noise_level - 1,
                                                  value=0, )
                    c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat(
                        torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
                    adm_cond = torch.cat((c_adm, noise_level_emb), 1) * weight
                adm_uc = torch.zeros_like(adm_cond)
            return adm_cond, adm_uc, weight


        adm_inputs = list()
        weights = list()
        for n in range(num_inputs):
            adm_cond, adm_uc, w = make_conditionings_from_input(num=n + 1, key=n)
            weights.append(w)
            adm_inputs.append(adm_cond)
        adm_cond = torch.stack(adm_inputs).sum(0) / sum(weights)
        if num_inputs > 1:
            if st.checkbox("Apply Noise to Embedding Mix", True):
                noise_level = st.number_input(f"Noise Augmentation for averaged CLIP embeddings", min_value=0,
                                              max_value=state["model"].noise_augmentor.max_noise_level - 1, value=50, )
                c_adm, noise_level_emb = state["model"].noise_augmentor(
                    adm_cond[:, :state["model"].noise_augmentor.time_embed.dim],
                    noise_level=repeat(
                        torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
                adm_cond = torch.cat((c_adm, noise_level_emb), 1)

    if st.button("Sample"):
        print("running prompt:", prompt)
        st.text("Sampling")
        t_progress = st.progress(0)
        result = st.empty()


        def t_callback(t):
            t_progress.progress(min((t + 1) / steps, 1.))


        if version == "Full Karlo":
            outputs = st.empty()
            karlo_sampler = state["karlo_prior"]
            all_samples = list()
            with torch.no_grad():
                for _ in range(number_rows):
                    karlo_prediction = iter(
                        karlo_sampler(
                            prompt=prompt,
                            bsz=number_cols,
                            progressive_mode="final",
                        )
                    ).__next__()
                    all_samples.append(karlo_prediction)
            grid = torch.stack(all_samples, 0)
            grid = rearrange(grid, 'n b c h w -> (n h) (b w) c')
            outputs.image(grid.cpu().numpy())

        else:
            samples = sample(
                state["model"],
                prompt,
                n_runs=number_rows,
                n_samples=number_cols,
                H=H, W=W, C=C, f=f,
                scale=scale,
                ddim_steps=steps,
                ddim_eta=eta,
                callback=t_callback,
                ucg_schedule=ucg_schedule,
                negative_prompt=negative_prompt,
                adm_cond=adm_cond, adm_uc=adm_uc,
                use_full_precision=force_full_precision,
                only_adm_cond=False
            )