rafaldembski's picture
Update app.py
8fa55d0 verified
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import warnings
warnings.filterwarnings("ignore")
if not os.path.exists("DIS"):
os.system("git clone https://github.com/xuebinqin/DIS")
if not os.path.exists("IS-Net"):
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
# Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
if not os.path.exists("saved_models/isnet.pth"):
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Set Parameters
hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
def inference(image):
image_tensor, orig_size = load_image(image, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(image).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
return [im_rgba, pil_mask]
# Translation texts
translations = {
"pl": {
"title": "Zaawansowane Segmentowanie Obraz贸w",
"description": """
**Zaawansowane Segmentowanie Obraz贸w** to zaawansowane narz臋dzie oparte na sztucznej inteligencji, zaprojektowane do precyzyjnego segmentowania obraz贸w. Aplikacja ta wykorzystuje najnowsze technologie g艂臋bokiego uczenia, aby generowa膰 dok艂adne maski dla r贸偶nych typ贸w obraz贸w. Stworzona przez ekspert贸w, oferuje u偶ytkownikom intuicyjny interfejs do przetwarzania obraz贸w. Niezale偶nie od tego, czy jest u偶ywana do cel贸w zawodowych, czy do projekt贸w osobistych, to narz臋dzie zapewnia najwy偶sz膮 jako艣膰 i niezawodno艣膰 w zadaniach segmentacji obraz贸w.
**Technologie**:
- Model: ISNetDIS
- Stworzony przez: Rafa艂 Dembski
- Technologie: PyTorch, Gradio, OpenCV
""",
"article": ""
},
"en": {
"title": "Advanced Image Segmentation",
"description": """
**Advanced Image Segmentation** is an advanced AI-based tool designed for precise image segmentation. This application utilizes the latest deep learning technologies to generate accurate masks for different types of images. Created by experts, it offers users an intuitive interface for image processing. Whether used for professional purposes or personal projects, this tool ensures the highest quality and reliability in image segmentation tasks.
**Technologies**:
- Model: ISNetDIS
- Created by: Rafa艂 Dembski
- Technologies: PyTorch, Gradio, OpenCV
""",
"article": ""
},
"de": {
"title": "Fortgeschrittene Bildsegmentierung",
"description": """
**Fortgeschrittene Bildsegmentierung** ist ein fortschrittliches, auf k眉nstlicher Intelligenz basierendes Werkzeug, das f眉r die pr盲zise Bildsegmentierung entwickelt wurde. Diese Anwendung nutzt die neuesten Technologien des Deep Learnings, um genaue Masken f眉r verschiedene Bildtypen zu erzeugen. Von Experten erstellt, bietet es den Benutzern eine intuitive Benutzeroberfl盲che f眉r die Bildverarbeitung. Ob f眉r berufliche Zwecke oder pers枚nliche Projekte, dieses Werkzeug gew盲hrleistet h枚chste Qualit盲t und Zuverl盲ssigkeit bei der Bildsegmentierung.
**Technologien**:
- Modell: ISNetDIS
- Erstellt von: Rafa艂 Dembski
- Technologien: PyTorch, Gradio, OpenCV
""",
"article": ""
}
}
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def change_language(lang):
return translations[lang]['title'], translations[lang]['description'], translations[lang]['article']
with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as demo:
language = gr.State("en")
with gr.Row():
language_selector = gr.Dropdown(choices=["pl", "en", "de"], value="en", label="Wybierz j臋zyk / Select Language / Sprache ausw盲hlen", show_label=True)
with gr.Column(elem_id="col-container"):
gr.Image("logo.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False)
title = gr.Markdown(translations["en"]["title"])
description = gr.Markdown(translations["en"]["description"])
article = gr.Markdown(translations["en"]["article"])
inputs = gr.Image(type='filepath', label="Wybierz obraz")
outputs = [gr.Image(label="Wynik (z przezroczysto艣ci膮)"), gr.Image(label="Maska")]
run_button = gr.Button("Segmentuj", scale=0)
run_button.click(fn=inference, inputs=inputs, outputs=outputs)
language_selector.change(
fn=change_language,
inputs=language_selector,
outputs=[title, description, article],
api_name=False,
)
demo.launch()