File size: 7,116 Bytes
976b5ca
 
 
 
 
 
 
 
 
b5eda20
976b5ca
b5eda20
976b5ca
 
27817fc
 
b5eda20
27817fc
976b5ca
 
b5eda20
976b5ca
 
f914a7f
976b5ca
 
b5eda20
976b5ca
 
27817fc
97cb15e
f914a7f
976b5ca
b5eda20
976b5ca
 
 
b5eda20
 
976b5ca
 
b5eda20
976b5ca
 
 
 
b5eda20
976b5ca
b5eda20
976b5ca
b5eda20
f914a7f
976b5ca
b5eda20
976b5ca
 
 
 
 
 
 
b5eda20
 
976b5ca
b5eda20
976b5ca
 
f914a7f
976b5ca
 
b5eda20
976b5ca
 
 
 
b5eda20
 
 
976b5ca
b5eda20
976b5ca
 
 
b5eda20
976b5ca
 
b5eda20
 
976b5ca
b5eda20
976b5ca
b5eda20
 
 
976b5ca
b5eda20
976b5ca
 
b5eda20
976b5ca
b5eda20
 
976b5ca
 
 
f914a7f
976b5ca
 
dcb9e75
b5eda20
f914a7f
b5eda20
f914a7f
 
b5eda20
f914a7f
 
976b5ca
f914a7f
976b5ca
b5eda20
3479302
 
 
 
 
b5eda20
 
 
 
 
3479302
b5eda20
3479302
 
 
 
b5eda20
 
 
 
 
 
3479302
b5eda20
3479302
 
b5eda20
3479302
b5eda20
 
 
 
 
 
3479302
b5eda20
3479302
 
 
 
 
 
 
 
 
 
 
 
 
 
b5eda20
 
 
 
3479302
8fa55d0
 
 
 
 
3479302
8fa55d0
 
27817fc
8fa55d0
 
 
27817fc
3479302
 
 
 
27817fc
3479302
 
27817fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import warnings

warnings.filterwarnings("ignore")

if not os.path.exists("DIS"):
    os.system("git clone https://github.com/xuebinqin/DIS")
if not os.path.exists("IS-Net"):
    os.system("mv DIS/IS-Net/* .")

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *

# Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
if not os.path.exists("saved_models/isnet.pth"):
    os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = normalize(image, self.mean, self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)  # make a batch of image, shape

def build_model(hypar, device):
    net = hypar["model"]

    if hypar["model_digit"] == "half":
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if hypar["restore_model"] != "":
        net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()

    if hypar["model_digit"] == "full":
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0, :, :, :]

    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val - mi) / (ma - mi)

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)

# Set Parameters
hypar = {}

hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False

hypar["model_digit"] = "full"
hypar["seed"] = 0

hypar["cache_size"] = [1024, 1024]

hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]

hypar["model"] = ISNetDIS()

# Build Model
net = build_model(hypar, device)

def inference(image):
    image_tensor, orig_size = load_image(image, hypar)
    mask = predict(net, image_tensor, orig_size, hypar, device)

    pil_mask = Image.fromarray(mask).convert('L')
    im_rgb = Image.open(image).convert("RGB")

    im_rgba = im_rgb.copy()
    im_rgba.putalpha(pil_mask)

    return [im_rgba, pil_mask]

# Translation texts
translations = {
    "pl": {
        "title": "Zaawansowane Segmentowanie Obrazów",
        "description": """
        **Zaawansowane Segmentowanie Obrazów** to zaawansowane narzędzie oparte na sztucznej inteligencji, zaprojektowane do precyzyjnego segmentowania obrazów. Aplikacja ta wykorzystuje najnowsze technologie głębokiego uczenia, aby generować dokładne maski dla różnych typów obrazów. Stworzona przez ekspertów, oferuje użytkownikom intuicyjny interfejs do przetwarzania obrazów. Niezależnie od tego, czy jest używana do celów zawodowych, czy do projektów osobistych, to narzędzie zapewnia najwyższą jakość i niezawodność w zadaniach segmentacji obrazów.
        
        **Technologie**:
        - Model: ISNetDIS
        - Stworzony przez: Rafał Dembski
        - Technologie: PyTorch, Gradio, OpenCV
        """,
        "article": ""
    },
    "en": {
        "title": "Advanced Image Segmentation",
        "description": """
        **Advanced Image Segmentation** is an advanced AI-based tool designed for precise image segmentation. This application utilizes the latest deep learning technologies to generate accurate masks for different types of images. Created by experts, it offers users an intuitive interface for image processing. Whether used for professional purposes or personal projects, this tool ensures the highest quality and reliability in image segmentation tasks.
        
        **Technologies**:
        - Model: ISNetDIS
        - Created by: Rafał Dembski
        - Technologies: PyTorch, Gradio, OpenCV
        """,
        "article": ""
    },
    "de": {
        "title": "Fortgeschrittene Bildsegmentierung",
        "description": """
        **Fortgeschrittene Bildsegmentierung** ist ein fortschrittliches, auf künstlicher Intelligenz basierendes Werkzeug, das für die präzise Bildsegmentierung entwickelt wurde. Diese Anwendung nutzt die neuesten Technologien des Deep Learnings, um genaue Masken für verschiedene Bildtypen zu erzeugen. Von Experten erstellt, bietet es den Benutzern eine intuitive Benutzeroberfläche für die Bildverarbeitung. Ob für berufliche Zwecke oder persönliche Projekte, dieses Werkzeug gewährleistet höchste Qualität und Zuverlässigkeit bei der Bildsegmentierung.
        
        **Technologien**:
        - Modell: ISNetDIS
        - Erstellt von: Rafał Dembski
        - Technologien: PyTorch, Gradio, OpenCV
        """,
        "article": ""
    }
}

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

def change_language(lang):
    return translations[lang]['title'], translations[lang]['description'], translations[lang]['article']

with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as demo:
    language = gr.State("en")

    with gr.Row():
        language_selector = gr.Dropdown(choices=["pl", "en", "de"], value="en", label="Wybierz język / Select Language / Sprache auswählen", show_label=True)

    with gr.Column(elem_id="col-container"):
        gr.Image("logo.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False)
        title = gr.Markdown(translations["en"]["title"])
        description = gr.Markdown(translations["en"]["description"])
        article = gr.Markdown(translations["en"]["article"])

        inputs = gr.Image(type='filepath', label="Wybierz obraz")
        outputs = [gr.Image(label="Wynik (z przezroczystością)"), gr.Image(label="Maska")]

        run_button = gr.Button("Segmentuj", scale=0)
        
        run_button.click(fn=inference, inputs=inputs, outputs=outputs)
            
    language_selector.change(
        fn=change_language,
        inputs=language_selector,
        outputs=[title, description, article],
        api_name=False,
    )

demo.launch()