Spaces:
Runtime error
Runtime error
File size: 7,116 Bytes
976b5ca b5eda20 976b5ca b5eda20 976b5ca 27817fc b5eda20 27817fc 976b5ca b5eda20 976b5ca f914a7f 976b5ca b5eda20 976b5ca 27817fc 97cb15e f914a7f 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 f914a7f 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca f914a7f 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca b5eda20 976b5ca f914a7f 976b5ca dcb9e75 b5eda20 f914a7f b5eda20 f914a7f b5eda20 f914a7f 976b5ca f914a7f 976b5ca b5eda20 3479302 b5eda20 3479302 b5eda20 3479302 b5eda20 3479302 b5eda20 3479302 b5eda20 3479302 b5eda20 3479302 b5eda20 3479302 b5eda20 3479302 8fa55d0 3479302 8fa55d0 27817fc 8fa55d0 27817fc 3479302 27817fc 3479302 27817fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import warnings
warnings.filterwarnings("ignore")
if not os.path.exists("DIS"):
os.system("git clone https://github.com/xuebinqin/DIS")
if not os.path.exists("IS-Net"):
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
# Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
if not os.path.exists("saved_models/isnet.pth"):
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Set Parameters
hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
def inference(image):
image_tensor, orig_size = load_image(image, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(image).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
return [im_rgba, pil_mask]
# Translation texts
translations = {
"pl": {
"title": "Zaawansowane Segmentowanie Obrazów",
"description": """
**Zaawansowane Segmentowanie Obrazów** to zaawansowane narzędzie oparte na sztucznej inteligencji, zaprojektowane do precyzyjnego segmentowania obrazów. Aplikacja ta wykorzystuje najnowsze technologie głębokiego uczenia, aby generować dokładne maski dla różnych typów obrazów. Stworzona przez ekspertów, oferuje użytkownikom intuicyjny interfejs do przetwarzania obrazów. Niezależnie od tego, czy jest używana do celów zawodowych, czy do projektów osobistych, to narzędzie zapewnia najwyższą jakość i niezawodność w zadaniach segmentacji obrazów.
**Technologie**:
- Model: ISNetDIS
- Stworzony przez: Rafał Dembski
- Technologie: PyTorch, Gradio, OpenCV
""",
"article": ""
},
"en": {
"title": "Advanced Image Segmentation",
"description": """
**Advanced Image Segmentation** is an advanced AI-based tool designed for precise image segmentation. This application utilizes the latest deep learning technologies to generate accurate masks for different types of images. Created by experts, it offers users an intuitive interface for image processing. Whether used for professional purposes or personal projects, this tool ensures the highest quality and reliability in image segmentation tasks.
**Technologies**:
- Model: ISNetDIS
- Created by: Rafał Dembski
- Technologies: PyTorch, Gradio, OpenCV
""",
"article": ""
},
"de": {
"title": "Fortgeschrittene Bildsegmentierung",
"description": """
**Fortgeschrittene Bildsegmentierung** ist ein fortschrittliches, auf künstlicher Intelligenz basierendes Werkzeug, das für die präzise Bildsegmentierung entwickelt wurde. Diese Anwendung nutzt die neuesten Technologien des Deep Learnings, um genaue Masken für verschiedene Bildtypen zu erzeugen. Von Experten erstellt, bietet es den Benutzern eine intuitive Benutzeroberfläche für die Bildverarbeitung. Ob für berufliche Zwecke oder persönliche Projekte, dieses Werkzeug gewährleistet höchste Qualität und Zuverlässigkeit bei der Bildsegmentierung.
**Technologien**:
- Modell: ISNetDIS
- Erstellt von: Rafał Dembski
- Technologien: PyTorch, Gradio, OpenCV
""",
"article": ""
}
}
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def change_language(lang):
return translations[lang]['title'], translations[lang]['description'], translations[lang]['article']
with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as demo:
language = gr.State("en")
with gr.Row():
language_selector = gr.Dropdown(choices=["pl", "en", "de"], value="en", label="Wybierz język / Select Language / Sprache auswählen", show_label=True)
with gr.Column(elem_id="col-container"):
gr.Image("logo.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False)
title = gr.Markdown(translations["en"]["title"])
description = gr.Markdown(translations["en"]["description"])
article = gr.Markdown(translations["en"]["article"])
inputs = gr.Image(type='filepath', label="Wybierz obraz")
outputs = [gr.Image(label="Wynik (z przezroczystością)"), gr.Image(label="Maska")]
run_button = gr.Button("Segmentuj", scale=0)
run_button.click(fn=inference, inputs=inputs, outputs=outputs)
language_selector.change(
fn=change_language,
inputs=language_selector,
outputs=[title, description, article],
api_name=False,
)
demo.launch()
|