Spaces:
Running
Running
import torch.nn as nn | |
import torch.nn.functional as F | |
from models.conv_blocks import InvertedResBlock | |
from models.conv_blocks import ConvBlock | |
from models.conv_blocks import UpConvLNormLReLU | |
from utils.common import initialize_weights | |
class GeneratorV2(nn.Module): | |
def __init__(self, dataset=''): | |
super(GeneratorV2, self).__init__() | |
self.name = f'{self.__class__.__name__}_{dataset}' | |
self.conv_block1 = nn.Sequential( | |
ConvBlock(3, 32, kernel_size=7, stride=1, padding=3, norm_type="layer"), | |
ConvBlock(32, 64, kernel_size=3, stride=2, padding=(0, 1, 0, 1), norm_type="layer"), | |
ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer"), | |
) | |
self.conv_block2 = nn.Sequential( | |
ConvBlock(64, 128, kernel_size=3, stride=2, padding=(0, 1, 0, 1), norm_type="layer"), | |
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), | |
) | |
self.res_blocks = nn.Sequential( | |
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), | |
InvertedResBlock(128, 256, expand_ratio=2, norm_type="layer"), | |
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"), | |
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"), | |
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"), | |
ConvBlock(256, 128, kernel_size=3, stride=1, norm_type="layer"), | |
) | |
self.conv_block3 = nn.Sequential( | |
# UpConvLNormLReLU(128, 128, norm_type="layer"), | |
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), | |
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), | |
) | |
self.conv_block4 = nn.Sequential( | |
# UpConvLNormLReLU(128, 64, norm_type="layer"), | |
ConvBlock(128, 64, kernel_size=3, stride=1, norm_type="layer"), | |
ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer"), | |
ConvBlock(64, 32, kernel_size=7, padding=3, stride=1, norm_type="layer"), | |
) | |
self.decode_blocks = nn.Sequential( | |
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0), | |
nn.Tanh(), | |
) | |
initialize_weights(self) | |
def forward(self, x): | |
out = self.conv_block1(x) | |
out = self.conv_block2(out) | |
out = self.res_blocks(out) | |
out = F.interpolate(out, scale_factor=2, mode="bilinear") | |
out = self.conv_block3(out) | |
out = F.interpolate(out, scale_factor=2, mode="bilinear") | |
out = self.conv_block4(out) | |
img = self.decode_blocks(out) | |
return img | |