File size: 2,641 Bytes
f2fa83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

import torch.nn as nn
import torch.nn.functional as F
from models.conv_blocks import InvertedResBlock
from models.conv_blocks import ConvBlock
from models.conv_blocks import UpConvLNormLReLU
from utils.common import initialize_weights


class GeneratorV2(nn.Module):
    def __init__(self, dataset=''):
        super(GeneratorV2, self).__init__()
        self.name = f'{self.__class__.__name__}_{dataset}'

        self.conv_block1 = nn.Sequential(
            ConvBlock(3, 32, kernel_size=7, stride=1, padding=3, norm_type="layer"),
            ConvBlock(32, 64, kernel_size=3, stride=2, padding=(0, 1, 0, 1), norm_type="layer"),
            ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer"),
        )

        self.conv_block2 = nn.Sequential(
            ConvBlock(64, 128, kernel_size=3, stride=2, padding=(0, 1, 0, 1), norm_type="layer"),
            ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"),
        )

        self.res_blocks = nn.Sequential(
            ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"),
            InvertedResBlock(128, 256, expand_ratio=2, norm_type="layer"),
            InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"),
            InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"),
            InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"),
            ConvBlock(256, 128, kernel_size=3, stride=1, norm_type="layer"),
        )

        self.conv_block3 = nn.Sequential(
            # UpConvLNormLReLU(128, 128, norm_type="layer"),
            ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"),
            ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"),
        )

        self.conv_block4 = nn.Sequential(
            # UpConvLNormLReLU(128, 64, norm_type="layer"),
            ConvBlock(128, 64, kernel_size=3, stride=1, norm_type="layer"),
            ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer"),
            ConvBlock(64, 32, kernel_size=7, padding=3, stride=1, norm_type="layer"),
        )

        self.decode_blocks = nn.Sequential(
            nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
            nn.Tanh(),
        )

        initialize_weights(self)

    def forward(self, x):
        out = self.conv_block1(x)
        out = self.conv_block2(out)
        out = self.res_blocks(out)
        out = F.interpolate(out, scale_factor=2, mode="bilinear")
        out = self.conv_block3(out)
        out = F.interpolate(out, scale_factor=2, mode="bilinear")
        out = self.conv_block4(out)
        img = self.decode_blocks(out)

        return img