QwQ-Edge / app.py
prithivMLmods's picture
Update app.py
9118d80 verified
raw
history blame
4.39 kB
import os
import gradio as gr
import torch
import tempfile
import asyncio
import edge_tts
import spaces
from pydub import AudioSegment
from threading import Thread
from collections.abc import Iterator
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """
# QwQ Tiny with Edge TTS (MP3 Output)
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
async def text_to_speech(text: str) -> str:
"""Converts text to speech using Edge TTS, converts WAV to MP3, and returns the MP3 file path."""
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav:
wav_path = tmp_wav.name
communicate = edge_tts.Communicate(text)
await communicate.save(wav_path)
# Convert WAV to MP3
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_mp3:
mp3_path = tmp_mp3.name
audio = AudioSegment.from_wav(wav_path)
audio.export(mp3_path, format="mp3")
os.remove(wav_path) # Delete the original WAV file
return mp3_path # Return the MP3 file path
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str] | str:
is_tts = message.strip().startswith("@tts")
is_text_only = message.strip().startswith("@text")
# Remove special tags
if is_tts:
message = message.replace("@tts", "").strip()
elif is_text_only:
message = message.replace("@text", "").strip()
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
final_output = "".join(outputs)
# If TTS requested, generate speech and return audio file
if is_tts:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
audio_path = loop.run_until_complete(text_to_speech(final_output))
return audio_path
return final_output #
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
stop_btn=None,
examples=[
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
["@text What is AI?"],
["@tts Explain Newton's third law of motion."],
["@text Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()