Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import torch | |
import tempfile | |
import asyncio | |
import edge_tts | |
import spaces | |
from pydub import AudioSegment | |
from threading import Thread | |
from collections.abc import Iterator | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DESCRIPTION = """ | |
# QwQ Tiny with Edge TTS (MP3 Output) | |
""" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
async def text_to_speech(text: str) -> str: | |
"""Converts text to speech using Edge TTS, converts WAV to MP3, and returns the MP3 file path.""" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav: | |
wav_path = tmp_wav.name | |
communicate = edge_tts.Communicate(text) | |
await communicate.save(wav_path) | |
# Convert WAV to MP3 | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_mp3: | |
mp3_path = tmp_mp3.name | |
audio = AudioSegment.from_wav(wav_path) | |
audio.export(mp3_path, format="mp3") | |
os.remove(wav_path) # Delete the original WAV file | |
return mp3_path # Return the MP3 file path | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str] | str: | |
is_tts = message.strip().startswith("@tts") | |
is_text_only = message.strip().startswith("@text") | |
# Remove special tags | |
if is_tts: | |
message = message.replace("@tts", "").strip() | |
elif is_text_only: | |
message = message.replace("@text", "").strip() | |
conversation = [*chat_history, {"role": "user", "content": message}] | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
final_output = "".join(outputs) | |
# If TTS requested, generate speech and return audio file | |
if is_tts: | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
audio_path = loop.run_until_complete(text_to_speech(final_output)) | |
return audio_path | |
return final_output # | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
stop_btn=None, | |
examples=[ | |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], | |
["@text What is AI?"], | |
["@tts Explain Newton's third law of motion."], | |
["@text Rewrite the following sentence in passive voice: 'The dog chased the cat.'"], | |
], | |
cache_examples=False, | |
type="messages", | |
description=DESCRIPTION, | |
fill_height=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() |