import os import gradio as gr import torch import tempfile import asyncio import edge_tts import spaces from pydub import AudioSegment from threading import Thread from collections.abc import Iterator from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = """ # QwQ Tiny with Edge TTS (MP3 Output) """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "prithivMLmods/FastThink-0.5B-Tiny" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() async def text_to_speech(text: str) -> str: """Converts text to speech using Edge TTS, converts WAV to MP3, and returns the MP3 file path.""" with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav: wav_path = tmp_wav.name communicate = edge_tts.Communicate(text) await communicate.save(wav_path) # Convert WAV to MP3 with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_mp3: mp3_path = tmp_mp3.name audio = AudioSegment.from_wav(wav_path) audio.export(mp3_path, format="mp3") os.remove(wav_path) # Delete the original WAV file return mp3_path # Return the MP3 file path @spaces.GPU def generate( message: str, chat_history: list[dict], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str] | str: is_tts = message.strip().startswith("@tts") is_text_only = message.strip().startswith("@text") # Remove special tags if is_tts: message = message.replace("@tts", "").strip() elif is_text_only: message = message.replace("@text", "").strip() conversation = [*chat_history, {"role": "user", "content": message}] input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = { "input_ids": input_ids, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "top_p": top_p, "top_k": top_k, "temperature": temperature, "num_beams": 1, "repetition_penalty": repetition_penalty, } t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) final_output = "".join(outputs) # If TTS requested, generate speech and return audio file if is_tts: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) audio_path = loop.run_until_complete(text_to_speech(final_output)) return audio_path return final_output # demo = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), ], stop_btn=None, examples=[ ["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], ["@text What is AI?"], ["@tts Explain Newton's third law of motion."], ["@text Rewrite the following sentence in passive voice: 'The dog chased the cat.'"], ], cache_examples=False, type="messages", description=DESCRIPTION, fill_height=True, ) if __name__ == "__main__": demo.queue(max_size=20).launch()