File size: 6,705 Bytes
e04ce6b
1dcd95e
e04ce6b
1dcd95e
e0358af
1dcd95e
 
 
 
 
 
 
 
 
e04ce6b
1dcd95e
 
 
e04ce6b
1dcd95e
e04ce6b
1dcd95e
e0358af
 
 
e04ce6b
1dcd95e
 
 
 
 
e04ce6b
1dcd95e
 
e04ce6b
 
e0358af
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04ce6b
 
1dcd95e
e04ce6b
1dcd95e
e0358af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04ce6b
1dcd95e
 
 
 
 
 
 
 
e04ce6b
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
 
e0358af
 
1dcd95e
e0358af
1dcd95e
 
 
 
 
 
 
 
 
 
 
e04ce6b
1dcd95e
 
e04ce6b
1dcd95e
 
e04ce6b
1dcd95e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
import subprocess
from qwen_vl_utils import process_vision_info
from threading import Thread
import uuid
import io

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

# FLUX.1-dev model
pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token
).to(device)

# Initialize Qwen2VL model
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/JSONify-Flux", trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
qwen_processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux", trust_remote_code=True)

# Prompt Enhancer
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024  # Reduced to prevent memory issues

# Qwen2VL caption function
@spaces.GPU
def qwen_caption(image):
    # Convert image to PIL if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": "Caption the image"},
            ],
        }
    ]

    text = qwen_processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = qwen_processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(device)

    generated_ids = qwen_model.generate(**inputs, max_new_tokens=1024)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = qwen_processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )[0]
    
    return output_text

# Prompt Enhancer function
def enhance_prompt(input_prompt):
    result = enhancer_long("Enhance the description: " + input_prompt)
    enhanced_text = result[0]['summary_text']
    return enhanced_text

@spaces.GPU(duration=190)
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    if image is not None:
        # Convert image to PIL if it's not already
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        prompt = qwen_caption(image)
        print(prompt)
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    # Reduce memory usage by clearing GPU cache
    torch.cuda.empty_cache()
    
    # Generate image with FLUX.1-dev
    try:
        image = pipe(
            prompt=prompt,
            generator=generator,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            guidance_scale=guidance_scale
        ).images[0]
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            raise RuntimeError("CUDA out of memory. Try reducing image size or inference steps.")
        else:
            raise e
    
    return image, prompt, seed

custom_css = """
.input-group, .output-group {
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">FLUX.1-dev with Qwen2VL Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
<a href="https://huggingface.co/prithivMLmods/JSONify-Flux" target="_blank">[Qwen2VL Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image (Qwen2VL Captioner)")
            
            with gr.Accordion("Advanced Settings", open=False):
                text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)  # Reduced default width
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)  # Reduced default height
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=20)  # Reduced default steps
            
            generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
                final_prompt = gr.Textbox(label="Final Prompt Used")
                used_seed = gr.Number(label="Seed Used")
    
    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, use_enhancer, seed, randomize_seed,
            width, height, guidance_scale, num_inference_steps
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)