Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,222 +1,176 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
import gradio as gr
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
import spaces
|
|
|
9 |
import torch
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
}
|
22 |
-
'''
|
23 |
-
|
24 |
-
examples = [
|
25 |
-
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
26 |
-
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
27 |
-
"Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw",
|
28 |
-
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
29 |
-
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
30 |
-
|
31 |
-
]
|
32 |
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
36 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
37 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
38 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
43 |
-
MODEL_ID,
|
44 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
45 |
-
use_safetensors=True,
|
46 |
-
add_watermarker=False,
|
47 |
-
).to(device)
|
48 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
pipe.enable_model_cpu_offload()
|
57 |
|
58 |
MAX_SEED = np.iinfo(np.int32).max
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
if randomize_seed:
|
67 |
seed = random.randint(0, MAX_SEED)
|
68 |
-
|
69 |
-
|
70 |
-
@spaces.GPU(duration=60, enable_queue=True)
|
71 |
-
def generate(
|
72 |
-
prompt: str,
|
73 |
-
negative_prompt: str = "",
|
74 |
-
use_negative_prompt: bool = False,
|
75 |
-
seed: int = 1,
|
76 |
-
width: int = 1024,
|
77 |
-
height: int = 1024,
|
78 |
-
guidance_scale: float = 3,
|
79 |
-
num_inference_steps: int = 25,
|
80 |
-
randomize_seed: bool = False,
|
81 |
-
use_resolution_binning: bool = True,
|
82 |
-
num_images: int = 1, # Number of images to generate
|
83 |
-
progress=gr.Progress(track_tqdm=True),
|
84 |
-
):
|
85 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
86 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
"generator": generator,
|
97 |
-
"output_type": "pil",
|
98 |
-
}
|
99 |
-
|
100 |
-
if use_resolution_binning:
|
101 |
-
options["use_resolution_binning"] = True
|
102 |
-
|
103 |
-
#Images potential batches
|
104 |
-
images = []
|
105 |
-
for i in range(0, num_images, BATCH_SIZE):
|
106 |
-
batch_options = options.copy()
|
107 |
-
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
108 |
-
if "negative_prompt" in batch_options:
|
109 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
110 |
-
images.extend(pipe(**batch_options).images)
|
111 |
-
|
112 |
-
image_paths = [save_image(img) for img in images]
|
113 |
-
return image_paths, seed
|
114 |
-
|
115 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
116 |
-
gr.Markdown(DESCRIPTIONx)
|
117 |
-
with gr.Group():
|
118 |
-
with gr.Row():
|
119 |
-
prompt = gr.Text(
|
120 |
-
label="Prompt",
|
121 |
-
show_label=False,
|
122 |
-
max_lines=1,
|
123 |
-
placeholder="Enter your prompt",
|
124 |
-
container=False,
|
125 |
-
)
|
126 |
-
run_button = gr.Button("Run", scale=0)
|
127 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
128 |
-
with gr.Accordion("Advanced options", open=False, visible=False):
|
129 |
-
num_images = gr.Slider(
|
130 |
-
label="Number of Images",
|
131 |
-
minimum=1,
|
132 |
-
maximum=4,
|
133 |
-
step=1,
|
134 |
-
value=1,
|
135 |
-
)
|
136 |
-
with gr.Row():
|
137 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
138 |
-
negative_prompt = gr.Text(
|
139 |
-
label="Negative prompt",
|
140 |
-
max_lines=5,
|
141 |
-
lines=4,
|
142 |
-
placeholder="Enter a negative prompt",
|
143 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
144 |
-
visible=True,
|
145 |
-
)
|
146 |
-
seed = gr.Slider(
|
147 |
-
label="Seed",
|
148 |
-
minimum=0,
|
149 |
-
maximum=MAX_SEED,
|
150 |
-
step=1,
|
151 |
-
value=0,
|
152 |
-
)
|
153 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
154 |
-
with gr.Row(visible=True):
|
155 |
-
width = gr.Slider(
|
156 |
-
label="Width",
|
157 |
-
minimum=512,
|
158 |
-
maximum=MAX_IMAGE_SIZE,
|
159 |
-
step=64,
|
160 |
-
value=1024,
|
161 |
-
)
|
162 |
-
height = gr.Slider(
|
163 |
-
label="Height",
|
164 |
-
minimum=512,
|
165 |
-
maximum=MAX_IMAGE_SIZE,
|
166 |
-
step=64,
|
167 |
-
value=1024,
|
168 |
-
)
|
169 |
-
with gr.Row():
|
170 |
-
guidance_scale = gr.Slider(
|
171 |
-
label="Guidance Scale",
|
172 |
-
minimum=0.1,
|
173 |
-
maximum=6,
|
174 |
-
step=0.1,
|
175 |
-
value=3.0,
|
176 |
-
)
|
177 |
-
num_inference_steps = gr.Slider(
|
178 |
-
label="Number of inference steps",
|
179 |
-
minimum=1,
|
180 |
-
maximum=25,
|
181 |
-
step=1,
|
182 |
-
value=23,
|
183 |
-
)
|
184 |
-
|
185 |
-
gr.Examples(
|
186 |
-
examples=examples,
|
187 |
-
inputs=prompt,
|
188 |
-
cache_examples=False
|
189 |
-
)
|
190 |
-
|
191 |
-
use_negative_prompt.change(
|
192 |
-
fn=lambda x: gr.update(visible=x),
|
193 |
-
inputs=use_negative_prompt,
|
194 |
-
outputs=negative_prompt,
|
195 |
-
api_name=False,
|
196 |
-
)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
inputs=[
|
206 |
-
|
207 |
-
|
208 |
-
use_negative_prompt,
|
209 |
-
seed,
|
210 |
-
width,
|
211 |
-
height,
|
212 |
-
guidance_scale,
|
213 |
-
num_inference_steps,
|
214 |
-
randomize_seed,
|
215 |
-
num_images
|
216 |
],
|
217 |
-
outputs=[
|
218 |
-
|
219 |
-
)
|
220 |
|
221 |
-
|
222 |
-
demo.queue(max_size=40).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
import gradio as gr
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline, Qwen2VLForConditionalGeneration
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
import subprocess
|
11 |
+
from qwen_vl_utils import process_vision_info
|
12 |
+
from threading import Thread
|
13 |
+
import uuid
|
14 |
+
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Initialize models
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
dtype = torch.bfloat16
|
19 |
|
20 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# FLUX.1-dev model
|
23 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Initialize Qwen2VL model
|
26 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
27 |
+
"prithivMLmods/JSONify-Flux", trust_remote_code=True, torch_dtype=torch.float16
|
28 |
+
).to(device).eval()
|
29 |
+
qwen_processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux", trust_remote_code=True)
|
30 |
|
31 |
+
# Prompt Enhancer
|
32 |
+
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
|
|
33 |
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
+
MAX_IMAGE_SIZE = 2048
|
36 |
+
|
37 |
+
# Qwen2VL caption function
|
38 |
+
@spaces.GPU
|
39 |
+
def qwen_caption(image):
|
40 |
+
# Convert image to PIL if it's not already
|
41 |
+
if not isinstance(image, Image.Image):
|
42 |
+
image = Image.fromarray(image)
|
43 |
+
|
44 |
+
messages = [
|
45 |
+
{
|
46 |
+
"role": "user",
|
47 |
+
"content": [
|
48 |
+
{"type": "image", "image": image},
|
49 |
+
{"type": "text", "text": "Caption the image"},
|
50 |
+
],
|
51 |
+
}
|
52 |
+
]
|
53 |
+
|
54 |
+
text = qwen_processor.apply_chat_template(
|
55 |
+
messages, tokenize=False, add_generation_prompt=True
|
56 |
+
)
|
57 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
58 |
+
inputs = qwen_processor(
|
59 |
+
text=[text],
|
60 |
+
images=image_inputs,
|
61 |
+
videos=video_inputs,
|
62 |
+
padding=True,
|
63 |
+
return_tensors="pt",
|
64 |
+
).to(device)
|
65 |
+
|
66 |
+
generated_ids = qwen_model.generate(**inputs, max_new_tokens=1024)
|
67 |
+
generated_ids_trimmed = [
|
68 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
69 |
+
]
|
70 |
+
output_text = qwen_processor.batch_decode(
|
71 |
+
generated_ids_trimmed,
|
72 |
+
skip_special_tokens=True,
|
73 |
+
clean_up_tokenization_spaces=False,
|
74 |
+
)[0]
|
75 |
+
|
76 |
+
return output_text
|
77 |
+
|
78 |
+
# Prompt Enhancer function
|
79 |
+
def enhance_prompt(input_prompt):
|
80 |
+
result = enhancer_long("Enhance the description: " + input_prompt)
|
81 |
+
enhanced_text = result[0]['summary_text']
|
82 |
+
return enhanced_text
|
83 |
+
|
84 |
+
@spaces.GPU(duration=190)
|
85 |
+
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
86 |
+
if image is not None:
|
87 |
+
# Convert image to PIL if it's not already
|
88 |
+
if not isinstance(image, Image.Image):
|
89 |
+
image = Image.fromarray(image)
|
90 |
+
|
91 |
+
prompt = qwen_caption(image)
|
92 |
+
print(prompt)
|
93 |
+
else:
|
94 |
+
prompt = text_prompt
|
95 |
+
|
96 |
+
if use_enhancer:
|
97 |
+
prompt = enhance_prompt(prompt)
|
98 |
+
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, MAX_SEED)
|
101 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
generator = torch.Generator(device=device).manual_seed(seed)
|
103 |
+
|
104 |
+
image = pipe(
|
105 |
+
prompt=prompt,
|
106 |
+
generator=generator,
|
107 |
+
num_inference_steps=num_inference_steps,
|
108 |
+
width=width,
|
109 |
+
height=height,
|
110 |
+
guidance_scale=guidance_scale
|
111 |
+
).images[0]
|
112 |
+
|
113 |
+
return image, prompt, seed
|
114 |
+
|
115 |
+
custom_css = """
|
116 |
+
.input-group, .output-group {
|
117 |
+
border: 1px solid #e0e0e0;
|
118 |
+
border-radius: 10px;
|
119 |
+
padding: 20px;
|
120 |
+
margin-bottom: 20px;
|
121 |
+
background-color: #f9f9f9;
|
122 |
+
}
|
123 |
+
.submit-btn {
|
124 |
+
background-color: #2980b9 !important;
|
125 |
+
color: white !important;
|
126 |
+
}
|
127 |
+
.submit-btn:hover {
|
128 |
+
background-color: #3498db !important;
|
129 |
+
}
|
130 |
+
"""
|
131 |
|
132 |
+
title = """<h1 align="center">FLUX.1-dev with Qwen2VL Captioner and Prompt Enhancer</h1>
|
133 |
+
<p><center>
|
134 |
+
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
|
135 |
+
<a href="https://huggingface.co/prithivMLmods/JSONify-Flux" target="_blank">[Qwen2VL Model]</a>
|
136 |
+
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
|
137 |
+
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
|
138 |
+
</center></p>
|
139 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
|
142 |
+
gr.HTML(title)
|
143 |
+
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column(scale=1):
|
146 |
+
with gr.Group(elem_classes="input-group"):
|
147 |
+
input_image = gr.Image(label="Input Image (Qwen2VL Captioner)")
|
148 |
+
|
149 |
+
with gr.Accordion("Advanced Settings", open=False):
|
150 |
+
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
|
151 |
+
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
|
152 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
153 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
154 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
155 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
156 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
|
157 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
|
158 |
+
|
159 |
+
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
|
160 |
+
|
161 |
+
with gr.Column(scale=1):
|
162 |
+
with gr.Group(elem_classes="output-group"):
|
163 |
+
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
|
164 |
+
final_prompt = gr.Textbox(label="Final Prompt Used")
|
165 |
+
used_seed = gr.Number(label="Seed Used")
|
166 |
+
|
167 |
+
generate_btn.click(
|
168 |
+
fn=process_workflow,
|
169 |
inputs=[
|
170 |
+
input_image, text_prompt, use_enhancer, seed, randomize_seed,
|
171 |
+
width, height, guidance_scale, num_inference_steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
],
|
173 |
+
outputs=[output_image, final_prompt, used_seed]
|
174 |
+
)
|
|
|
175 |
|
176 |
+
demo.launch(debug=True)
|
|