File size: 8,073 Bytes
e04ce6b
1dcd95e
e04ce6b
1dcd95e
e0358af
1dcd95e
 
 
 
 
e04ce6b
1dcd95e
 
 
e04ce6b
1dcd95e
e04ce6b
1dcd95e
e0358af
 
 
e04ce6b
1dcd95e
 
 
 
 
e04ce6b
da3da8b
94bd8c8
e04ce6b
 
4167141
1dcd95e
b604e8c
1dcd95e
 
6b8f8c9
1dcd95e
 
 
 
 
 
 
 
3ed9f62
1dcd95e
 
 
b604e8c
1dcd95e
 
 
 
 
 
 
 
 
 
b604e8c
 
 
 
 
 
 
 
 
1dcd95e
b604e8c
1dcd95e
 
 
 
 
 
 
 
 
6b8f8c9
1dcd95e
 
 
 
 
0000d2f
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
e04ce6b
 
1dcd95e
e04ce6b
1dcd95e
e0358af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dcd95e
 
 
 
 
b604e8c
1dcd95e
11c664b
 
 
 
 
 
 
 
1dcd95e
e04ce6b
1dcd95e
 
 
7af58fc
94bd8c8
1dcd95e
 
 
e04ce6b
7af58fc
94bd8c8
da3da8b
 
 
 
 
 
94bd8c8
 
 
da3da8b
 
94bd8c8
 
da3da8b
 
94bd8c8
 
da3da8b
 
 
1dcd95e
 
 
 
 
 
 
 
 
 
6b8f8c9
 
1dcd95e
94bd8c8
1dcd95e
94bd8c8
1dcd95e
 
 
94bd8c8
 
 
1dcd95e
 
 
e04ce6b
1dcd95e
 
e04ce6b
1dcd95e
 
e04ce6b
94bd8c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
from qwen_vl_utils import process_vision_info

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

# FLUX.1-dev model
pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token
).to(device)

# Initialize Qwen2VL model
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/JSONify-Flux", trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
qwen_processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux", trust_remote_code=True)

# Prompt Enhancer
enhancer_long = pipeline("summarization", model="prithivMLmods/t5-Flan-Prompt-Enhance", device=device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Qwen2VL caption function – updated with no_grad and autocast contexts, and explicit device moves
@spaces.GPU
def qwen_caption(image):
    # Convert image to PIL if needed
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": "Generate a detailed and optimized caption for the given image."},
            ],
        }
    ]
    
    text = qwen_processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = qwen_processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    # Explicitly move each tensor to device
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    # Wrap generation in no_grad and autocast contexts to prevent extra memory usage and potential caching issues
    with torch.no_grad():
        with torch.cuda.amp.autocast(device_type="cuda", dtype=torch.float16):
            generated_ids = qwen_model.generate(**inputs, max_new_tokens=1024)
    
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs["input_ids"], generated_ids)
    ]
    output_text = qwen_processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )[0]
    
    return output_text

# Prompt Enhancer function (unchanged)
def enhance_prompt(input_prompt):
    result = enhancer_long("Enhance the description: " + input_prompt)
    enhanced_text = result[0]['summary_text']
    return enhanced_text

@spaces.GPU
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    if image is not None:
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        prompt = qwen_caption(image)
        print(prompt)
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    torch.cuda.empty_cache()
    
    try:
        image = pipe(
            prompt=prompt,
            generator=generator,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            guidance_scale=guidance_scale
        ).images[0]
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            raise RuntimeError("CUDA out of memory. Try reducing image size or inference steps.")
        else:
            raise e
    
    return image, prompt, seed

custom_css = """
.input-group, .output-group {
    /* You can add styling here if needed */
}
.submit-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">FLUX.1-dev with Qwen2VL Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
<a href="https://huggingface.co/prithivMLmods/JSONify-Flux" target="_blank">[JSONify Flux Model]</a>
<a href="https://huggingface.co/prithivMLmods/t5-Flan-Prompt-Enhance" target="_blank">[Prompt Enhancer t5]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""

with gr.Blocks(css=custom_css) as demo:
    gr.HTML(title)
    
    with gr.Sidebar(label="Parameters", open=True):
        gr.Markdown(
            """
            ### About
            
            #### Flux.1-Dev
            FLUX.1 [dev] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. FLUX.1 [dev] is an open-weight, guidance-distilled model for non-commercial applications. Directly distilled from FLUX.1 [pro], FLUX.1 [dev] obtains similar quality and prompt adherence capabilities, while being more efficient than a standard model of the same size.  
            [FLUX.1-dev Model](https://huggingface.co/black-forest-labs/FLUX.1-dev)
            
            #### JSONify-Flux
            JSONify-Flux is a multimodal image-text-text model trained on a dataset of FLUX-generated images with context-rich captions based on the Qwen2VL architecture. The JSON-based instruction has been manually removed to avoid JSON format captions.  
            [JSONify-Flux Model](https://huggingface.co/prithivMLmods/JSONify-Flux)
            
            #### t5-Flan-Prompt-Enhance
            t5-Flan-Prompt-Enhance is a prompt summarization model that enriches synthetic FLUX prompts with more detailed descriptions.  
            [t5-Flan-Prompt-Enhance Model](https://huggingface.co/prithivMLmods/t5-Flan-Prompt-Enhance)
            """
        )
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image (Qwen2VL Captioner)")
            
            with gr.Accordion("Advanced Settings", open=False):
                text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=32)
            
            generate_btn = gr.Button("Generate Image & Prompt", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Image(label="result", elem_id="gallery", show_label=False)
                final_prompt = gr.Textbox(label="prompt")
                used_seed = gr.Number(label="seed")
    
    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, use_enhancer, seed, randomize_seed,
            width, height, guidance_scale, num_inference_steps
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)