Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,675 Bytes
e04ce6b 1dcd95e e04ce6b 1dcd95e e0358af 1dcd95e e04ce6b 1dcd95e e04ce6b 1dcd95e e04ce6b 1dcd95e e0358af e04ce6b 1dcd95e e04ce6b 1dcd95e e04ce6b e0358af 1dcd95e 6b8f8c9 1dcd95e 6b8f8c9 1dcd95e 6b8f8c9 1dcd95e 6b8f8c9 1dcd95e e04ce6b 1dcd95e e04ce6b 1dcd95e 6b8f8c9 e0358af 1dcd95e 2da79de 1dcd95e e04ce6b 1dcd95e 7af58fc 1dcd95e e04ce6b 7af58fc 1dcd95e 6b8f8c9 1dcd95e 6b8f8c9 1dcd95e 2da79de 1dcd95e e04ce6b 1dcd95e e04ce6b 1dcd95e e04ce6b 1dcd95e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
from qwen_vl_utils import process_vision_info
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# FLUX.1-dev model
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token
).to(device)
# Initialize Qwen2VL model
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
"prithivMLmods/JSONify-Flux", trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
qwen_processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux", trust_remote_code=True)
# Prompt Enhancer
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024 # Reduced to prevent memory issues
# Qwen2VL caption function – updated to request plain text caption instead of JSON
@spaces.GPU
def qwen_caption(image):
# Convert image to PIL if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
# Removed "in the form of JSON data {}" to get plain text caption
{"type": "text", "text": "Generate a detailed and optimized caption for the given image."},
],
}
]
text = qwen_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = qwen_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
generated_ids = qwen_model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = qwen_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
return output_text
# Prompt Enhancer function (unchanged)
def enhance_prompt(input_prompt):
result = enhancer_long("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
return enhanced_text
@spaces.GPU(duration=190)
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if image is not None:
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
prompt = qwen_caption(image)
print(prompt)
else:
prompt = text_prompt
if use_enhancer:
prompt = enhance_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Clear GPU cache before generating the image
torch.cuda.empty_cache()
try:
image = pipe(
prompt=prompt,
generator=generator,
num_inference_steps=num_inference_steps,
width=width,
height=height,
guidance_scale=guidance_scale
).images[0]
except RuntimeError as e:
if "CUDA out of memory" in str(e):
raise RuntimeError("CUDA out of memory. Try reducing image size or inference steps.")
else:
raise e
return image, prompt, seed
custom_css = """
.input-group, .output-group {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #f9f9f9;
}
.submit-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
title = """<h1 align="center">FLUX.1-dev with Qwen2VL Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
<a href="https://huggingface.co/prithivMLmods/JSONify-Flux" target="_blank">[JSONify Flux Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""
with gr.Blocks(css=custom_css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes="input-group"):
input_image = gr.Image(label="Input Image (Qwen2VL Captioner)")
with gr.Accordion("Advanced Settings", open=False):
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=20)
generate_btn = gr.Button("Generate Image + Prompt Enhanced", elem_classes="submit-btn")
with gr.Column(scale=1):
with gr.Group(elem_classes="output-group"):
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
final_prompt = gr.Textbox(label="Final Prompt Used")
used_seed = gr.Number(label="Seed Used")
generate_btn.click(
fn=process_workflow,
inputs=[
input_image, text_prompt, use_enhancer, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps
],
outputs=[output_image, final_prompt, used_seed]
)
demo.launch(debug=True) |