File size: 6,675 Bytes
e04ce6b
1dcd95e
e04ce6b
1dcd95e
e0358af
1dcd95e
 
 
 
 
e04ce6b
1dcd95e
 
 
e04ce6b
1dcd95e
e04ce6b
1dcd95e
e0358af
 
 
e04ce6b
1dcd95e
 
 
 
 
e04ce6b
1dcd95e
 
e04ce6b
 
e0358af
1dcd95e
6b8f8c9
1dcd95e
 
6b8f8c9
1dcd95e
 
 
 
 
 
 
 
6b8f8c9
 
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8f8c9
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04ce6b
 
1dcd95e
e04ce6b
1dcd95e
6b8f8c9
e0358af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
2da79de
 
1dcd95e
 
 
 
 
 
e04ce6b
1dcd95e
 
 
7af58fc
1dcd95e
 
 
 
e04ce6b
7af58fc
1dcd95e
 
 
 
 
 
 
 
 
 
 
 
6b8f8c9
 
1dcd95e
6b8f8c9
1dcd95e
2da79de
1dcd95e
 
 
 
 
 
 
 
 
e04ce6b
1dcd95e
 
e04ce6b
1dcd95e
 
e04ce6b
1dcd95e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
from qwen_vl_utils import process_vision_info

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

# FLUX.1-dev model
pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token
).to(device)

# Initialize Qwen2VL model
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/JSONify-Flux", trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
qwen_processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux", trust_remote_code=True)

# Prompt Enhancer
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024  # Reduced to prevent memory issues

# Qwen2VL caption function – updated to request plain text caption instead of JSON
@spaces.GPU
def qwen_caption(image):
    # Convert image to PIL if needed
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                # Removed "in the form of JSON data {}" to get plain text caption
                {"type": "text", "text": "Generate a detailed and optimized caption for the given image."},
            ],
        }
    ]

    text = qwen_processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = qwen_processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(device)

    generated_ids = qwen_model.generate(**inputs, max_new_tokens=1024)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = qwen_processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )[0]
    
    return output_text

# Prompt Enhancer function (unchanged)
def enhance_prompt(input_prompt):
    result = enhancer_long("Enhance the description: " + input_prompt)
    enhanced_text = result[0]['summary_text']
    return enhanced_text

@spaces.GPU(duration=190)
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    if image is not None:
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        prompt = qwen_caption(image)
        print(prompt)
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    # Clear GPU cache before generating the image
    torch.cuda.empty_cache()
    
    try:
        image = pipe(
            prompt=prompt,
            generator=generator,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            guidance_scale=guidance_scale
        ).images[0]
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            raise RuntimeError("CUDA out of memory. Try reducing image size or inference steps.")
        else:
            raise e
    
    return image, prompt, seed

custom_css = """
.input-group, .output-group {
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">FLUX.1-dev with Qwen2VL Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
<a href="https://huggingface.co/prithivMLmods/JSONify-Flux" target="_blank">[JSONify Flux Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""

with gr.Blocks(css=custom_css) as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image (Qwen2VL Captioner)")
            
            with gr.Accordion("Advanced Settings", open=False):
                text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=20)
            
            generate_btn = gr.Button("Generate Image + Prompt Enhanced", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
                final_prompt = gr.Textbox(label="Final Prompt Used")
                used_seed = gr.Number(label="Seed Used")
    
    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, use_enhancer, seed, randomize_seed,
            width, height, guidance_scale, num_inference_steps
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)