pratikshahp commited on
Commit
b74da9a
·
verified ·
1 Parent(s): 7a07213

Delete app-speech-to-text.py

Browse files
Files changed (1) hide show
  1. app-speech-to-text.py +0 -41
app-speech-to-text.py DELETED
@@ -1,41 +0,0 @@
1
- import torch
2
- from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
3
- import streamlit as st
4
- from audio_recorder_streamlit import audio_recorder
5
- import numpy as np
6
-
7
- # Function to transcribe audio to text
8
- def transcribe_audio(audio_bytes):
9
- processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
10
- model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
11
-
12
- # Convert bytes to numpy array
13
- audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
14
-
15
- # Cast audio array to double precision and normalize
16
- audio_tensor = torch.tensor(audio_array, dtype=torch.float32) / 32768.0
17
-
18
- input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16_000).input_values
19
- logits = model(input_values).logits
20
- predicted_ids = torch.argmax(logits, dim=-1)
21
- transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
22
-
23
- return transcription[0]
24
-
25
- # Streamlit app
26
- st.title("Audio to Text Transcription")
27
-
28
- audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
29
-
30
- if audio_bytes:
31
- st.audio(audio_bytes, format="audio/wav")
32
-
33
- transcription = transcribe_audio(audio_bytes)
34
-
35
- if transcription:
36
- st.write("Transcription:")
37
- st.write(transcription)
38
- else:
39
- st.write("Error: Failed to transcribe audio.")
40
- else:
41
- st.write("No audio recorded.")