Spaces:
Sleeping
Sleeping
Create app-speech-to-text.py
Browse files- app-speech-to-text.py +41 -0
app-speech-to-text.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
|
3 |
+
import streamlit as st
|
4 |
+
from audio_recorder_streamlit import audio_recorder
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Function to transcribe audio to text
|
8 |
+
def transcribe_audio(audio_bytes):
|
9 |
+
processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
|
10 |
+
model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
|
11 |
+
|
12 |
+
# Convert bytes to numpy array
|
13 |
+
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
14 |
+
|
15 |
+
# Cast audio array to double precision and normalize
|
16 |
+
audio_tensor = torch.tensor(audio_array, dtype=torch.float32) / 32768.0
|
17 |
+
|
18 |
+
input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16_000).input_values
|
19 |
+
logits = model(input_values).logits
|
20 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
21 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
22 |
+
|
23 |
+
return transcription[0]
|
24 |
+
|
25 |
+
# Streamlit app
|
26 |
+
st.title("Audio to Text Transcription")
|
27 |
+
|
28 |
+
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
|
29 |
+
|
30 |
+
if audio_bytes:
|
31 |
+
st.audio(audio_bytes, format="audio/wav")
|
32 |
+
|
33 |
+
transcription = transcribe_audio(audio_bytes)
|
34 |
+
|
35 |
+
if transcription:
|
36 |
+
st.write("Transcription:")
|
37 |
+
st.write(transcription)
|
38 |
+
else:
|
39 |
+
st.write("Error: Failed to transcribe audio.")
|
40 |
+
else:
|
41 |
+
st.write("No audio recorded.")
|