awadhi_bpe / README.md
pradeep6kumar2024's picture
Modified README.md and yaml
e9a9b38
|
raw
history blame
1.13 kB
metadata
title: Awadhi BPE Tokenizer
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 4.19.1
app_file: app.py
pinned: false
license: mit
python_version: '3.10'
app_port: 7860
tags:
  - awadhi
  - tokenizer
  - bpe
  - text-compression
datasets:
  - sunderkand_awdhi

Awadhi BPE Tokenizer

This space provides a Byte Pair Encoding (BPE) implementation for Awadhi text compression. It features:

  • Custom BPE implementation for Awadhi text
  • Vocabulary size < 5000 tokens
  • Compression ratio > 3.2
  • Interactive web interface

Usage

  1. Enter Awadhi text in the input box
  2. Click "Tokenize"
  3. View tokenization results and statistics

Implementation Details

  • Uses character-level tokenization as base
  • Implements BPE merging strategy
  • Handles UTF-8 encoded Awadhi text
  • Provides compression statistics

Model Details

  • Base tokenization: Character-level
  • Maximum vocabulary size: 4500 tokens
  • Training corpus: Sunderkand in Awadhi
  • Compression target: > 3.2x

Technical Requirements

  • Python 3.10+
  • PyTorch
  • Gradio 4.19.1+

License

This project is licensed under the MIT License.