Spaces:
Sleeping
Sleeping
File size: 9,349 Bytes
f7915f2 51e2303 f7915f2 d27225f f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 51e2303 f7915f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import torch
from torchvision import transforms
import numpy as np
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import io
from models import custom_resnet_lightning_s10
from utils import load_model_from_checkpoint, denormalize, get_data_label_name, get_dataset_labels
device = torch.device('cpu')
dataset_mean, dataset_std = (0.4914, 0.4822, 0.4465), \
(0.2470, 0.2435, 0.2616)
model = custom_resnet_lightning_s10.S10LightningModel(64)
checkpoint = load_model_from_checkpoint(device)
model.load_state_dict(checkpoint['model'], strict=False)
test_incorrect_pred = checkpoint['test_incorrect_pred']
sample_images = [
['images/aeroplane.jpeg', 0],
['images/bird.jpeg', 2],
['images/car.jpeg', 1],
['images/cat.jpeg', 3],
['images/deer.jpeg', 4],
['images/dog.jpeg', 5],
['images/frog.jpeg', 6],
['images/horse.jpeg', 7],
['images/ship.jpeg', 8],
['images/truck.jpeg', 9]
]
with gr.Blocks() as app:
'''
Select feature interface
'''
with gr.Row() as input_radio_group:
radio_btn = gr.Radio(
choices=['Top Prediction Classes', 'Missclassified Images', 'GradCAM Images'],
type="index",
label='Feature options',
info="Choose which feature you want to explore",
value='Top Prediction Classes'
)
'''
Options for GradCAM feature
'''
with gr.Row():
with gr.Column(visible=False) as grad_cam_col:
grad_cam_count = gr.Slider(1, 20, value=5, step=1, label="Choose image count",
info="How many images you want to view?")
grad_cam_layer = gr.Slider(-4, -1, value=-3, step=1, label="Choose model layer",
info="Which layer you want to view GradCAM on? [-4 => last layer]")
grad_cam_opacity = gr.Slider(0, 1, value=0.4, step=0.1, label="Choose opacity of the gradient")
with gr.Column():
grad_cam_btn = gr.Button("Yes, Go Ahead", variant='primary')
with gr.Column(visible=False) as grad_cam_output:
grad_cam_output_gallery = gr.Gallery(value=[], columns=3, label='Output')
# prediction_title = gr.Label(value='')
'''
Options for Missclassfied images feature
'''
with gr.Row(visible=False) as missclassified_col:
with gr.Row():
missclassified_img_count = gr.Slider(1, 20, value=5, step=1, label="Choose image count",
info="How many missclassified images you want to view?")
missclassified_btn = gr.Button("Click to Continue", variant='primary')
with gr.Row(visible=False) as missclassified_img_output:
missclassified_img_output_gallery = gr.Gallery(value=[], columns=5, label='Output')
'''
Option for Top prediction classes
'''
with gr.Row(visible=True) as top_pred_cls_col:
with gr.Column():
example_images = gr.Gallery(allow_preview=False, label='Select image ', info='', value=[img[0] for img in sample_images], columns=3, rows=2, object_fit='scale_down')
with gr.Column():
with gr.Row():
top_pred_image = gr.Image(shape=(32, 32), label='Upload Image or Select from the gallery')
top_class_count = gr.Slider(1, 10, value=5, step=1, label="Number of classes to predict")
top_class_btn = gr.Button("Submit", variant='primary')
tc_clear_btn = gr.ClearButton()
with gr.Row(visible=True) as top_class_output:
#top_class_output_img = gr.Image().style(width=256, height=256)
top_class_output_labels = gr.Label(num_top_classes=top_class_count.value, label='Output')
def clear_data():
return {
top_pred_image: None,
top_class_output_labels: None
}
tc_clear_btn.click(clear_data, None, [top_pred_image, top_class_output_labels])
def on_select(evt: gr.SelectData):
return {
top_pred_image: sample_images[evt.index][0]
}
example_images.select(on_select, None, top_pred_image)
def top_class_img_upload(input_img, top_class_count):
if input_img is not None:
transform = transforms.ToTensor()
org_img = input_img
input_img = transform(input_img)
input_img = input_img.to(device)
input_img = input_img.unsqueeze(0)
outputs = model(input_img, no_softmax=True)
softmax = torch.nn.Softmax(dim=0)
o = softmax(outputs.flatten())
confidences = {get_dataset_labels()[i]: float(o[i]) for i in range(10)}
top_class_output_labels.num_top_classes = top_class_count
#tc_clear_btn.add([top_pred_image, top_class_output_labels])
return {
top_class_output: gr.update(visible=True),
#top_class_output_img: org_img,
top_class_output_labels: confidences
}
top_class_btn.click(
top_class_img_upload,
[top_pred_image, top_class_count],
[top_class_output, top_class_output_labels]
)
'''
Missclassified Images feature
'''
def show_missclassified_images(img_count):
imgs = []
for i in range(img_count):
img = test_incorrect_pred['images'][i].cpu()
img = denormalize(img, dataset_mean, dataset_std)
img = np.array(255 * img, np.int16).transpose(1, 2, 0)
label = '✅ ' + get_data_label_name(
test_incorrect_pred['ground_truths'][i].item()) + ' ❌ ' + get_data_label_name(
test_incorrect_pred['predicted_vals'][i].item())
imgs.append((img, label))
return {
missclassified_img_output: gr.update(visible=True),
missclassified_img_output_gallery: imgs
}
missclassified_btn.click(
show_missclassified_images,
[missclassified_img_count],
[missclassified_img_output_gallery, missclassified_img_output]
)
'''
GradCAM Feature
'''
def grad_cam_submit(img_count, layer_idx, grad_opacity):
target_layers = [model.get_layer(-1 * (layer_idx + 1))]
cam = GradCAM(model=model, target_layers=target_layers)
visual_arr = []
pred_arr = []
for i in range(img_count):
pred_dict = test_incorrect_pred
targets = [ClassifierOutputTarget(pred_dict['ground_truths'][i].cpu().item())]
grayscale_cam = cam(input_tensor=pred_dict['images'][i][None, :].cpu(), targets=targets)
x = denormalize(pred_dict['images'][i].cpu(), dataset_mean, dataset_std)
image = np.array(255 * x, np.int16).transpose(1, 2, 0)
img_tensor = np.array(x, np.float16).transpose(1, 2, 0)
visualization = show_cam_on_image(img_tensor, grayscale_cam.transpose(1, 2, 0), use_rgb=True,
image_weight=(1.0 - grad_opacity))
visual_arr.append(
(visualization, get_data_label_name(pred_dict['ground_truths'][i].item()))
)
return {
grad_cam_output: gr.update(visible=True),
grad_cam_output_gallery: visual_arr
}
grad_cam_btn.click(
grad_cam_submit,
[grad_cam_count, grad_cam_layer, grad_cam_opacity],
[grad_cam_output_gallery, grad_cam_output]
)
'''
Select Feature to showcase
'''
def select_feature(feature):
if feature == 0:
return {
grad_cam_col: gr.update(visible=False),
grad_cam_output: gr.update(visible=False),
missclassified_col: gr.update(visible=False),
missclassified_img_output: gr.update(visible=False),
top_pred_cls_col: gr.update(visible=True),
top_class_output: gr.update(visible=True)
}
elif feature == 1:
return {
grad_cam_col: gr.update(visible=False),
grad_cam_output: gr.update(visible=False),
missclassified_col: gr.update(visible=True),
missclassified_img_output: gr.update(visible=True),
top_pred_cls_col: gr.update(visible=False),
top_class_output: gr.update(visible=False)
}
else:
return {
grad_cam_col: gr.update(visible=True),
grad_cam_output: gr.update(visible=True),
missclassified_col: gr.update(visible=False),
missclassified_img_output: gr.update(visible=False),
top_pred_cls_col: gr.update(visible=False),
top_class_output: gr.update(visible=False)
}
radio_btn.change(select_feature,
[radio_btn],
[grad_cam_col, grad_cam_output, missclassified_col, missclassified_img_output, top_pred_cls_col, top_class_output])
'''
Launch the app
'''
app.launch() |