Spaces:
Sleeping
Sleeping
Commit
·
51e2303
1
Parent(s):
d27225f
Update app.py
Browse files
app.py
CHANGED
@@ -34,6 +34,7 @@ sample_images = [
|
|
34 |
]
|
35 |
|
36 |
with gr.Blocks() as app:
|
|
|
37 |
'''
|
38 |
Select feature interface
|
39 |
'''
|
@@ -58,52 +59,59 @@ with gr.Blocks() as app:
|
|
58 |
grad_cam_opacity = gr.Slider(0, 1, value=0.4, step=0.1, label="Choose opacity of the gradient")
|
59 |
|
60 |
with gr.Column():
|
61 |
-
grad_cam_btn = gr.Button("Yes, Go Ahead")
|
62 |
|
63 |
with gr.Column(visible=False) as grad_cam_output:
|
64 |
grad_cam_output_gallery = gr.Gallery(value=[], columns=3, label='Output')
|
65 |
# prediction_title = gr.Label(value='')
|
66 |
|
|
|
67 |
'''
|
68 |
Options for Missclassfied images feature
|
69 |
'''
|
70 |
with gr.Row(visible=False) as missclassified_col:
|
71 |
with gr.Row():
|
72 |
missclassified_img_count = gr.Slider(1, 20, value=5, step=1, label="Choose image count",
|
73 |
-
info="How
|
74 |
-
missclassified_btn = gr.Button("Click to Continue")
|
75 |
with gr.Row(visible=False) as missclassified_img_output:
|
76 |
missclassified_img_output_gallery = gr.Gallery(value=[], columns=5, label='Output')
|
77 |
|
|
|
78 |
'''
|
79 |
Option for Top prediction classes
|
80 |
'''
|
81 |
with gr.Row(visible=True) as top_pred_cls_col:
|
82 |
with gr.Column():
|
83 |
-
example_images = gr.Gallery(allow_preview=False, label='Select image ', info='',
|
84 |
-
|
85 |
-
object_fit='scale_down')
|
86 |
-
|
87 |
with gr.Column():
|
88 |
with gr.Row():
|
89 |
top_pred_image = gr.Image(shape=(32, 32), label='Upload Image or Select from the gallery')
|
90 |
top_class_count = gr.Slider(1, 10, value=5, step=1, label="Number of classes to predict")
|
91 |
-
top_class_btn = gr.Button("Submit")
|
|
|
92 |
|
93 |
with gr.Row(visible=True) as top_class_output:
|
94 |
-
#
|
95 |
top_class_output_labels = gr.Label(num_top_classes=top_class_count.value, label='Output')
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def on_select(evt: gr.SelectData):
|
99 |
return {
|
100 |
top_pred_image: sample_images[evt.index][0]
|
101 |
}
|
102 |
-
|
103 |
-
|
104 |
example_images.select(on_select, None, top_pred_image)
|
105 |
-
|
106 |
-
|
107 |
def top_class_img_upload(input_img, top_class_count):
|
108 |
if input_img is not None:
|
109 |
transform = transforms.ToTensor()
|
@@ -116,24 +124,25 @@ with gr.Blocks() as app:
|
|
116 |
o = softmax(outputs.flatten())
|
117 |
confidences = {get_dataset_labels()[i]: float(o[i]) for i in range(10)}
|
118 |
top_class_output_labels.num_top_classes = top_class_count
|
|
|
|
|
119 |
return {
|
120 |
top_class_output: gr.update(visible=True),
|
121 |
-
#
|
122 |
top_class_output_labels: confidences
|
123 |
}
|
124 |
-
|
125 |
-
|
126 |
top_class_btn.click(
|
127 |
top_class_img_upload,
|
128 |
[top_pred_image, top_class_count],
|
129 |
[top_class_output, top_class_output_labels]
|
130 |
)
|
131 |
-
|
|
|
|
|
132 |
'''
|
133 |
Missclassified Images feature
|
134 |
'''
|
135 |
-
|
136 |
-
|
137 |
def show_missclassified_images(img_count):
|
138 |
imgs = []
|
139 |
for i in range(img_count):
|
@@ -157,13 +166,13 @@ with gr.Blocks() as app:
|
|
157 |
[missclassified_img_output_gallery, missclassified_img_output]
|
158 |
)
|
159 |
|
|
|
160 |
'''
|
161 |
GradCAM Feature
|
162 |
'''
|
163 |
-
|
164 |
-
|
165 |
def grad_cam_submit(img_count, layer_idx, grad_opacity):
|
166 |
-
|
167 |
target_layers = [model.get_layer(-1 * (layer_idx + 1))]
|
168 |
cam = GradCAM(model=model, target_layers=target_layers)
|
169 |
|
@@ -204,7 +213,6 @@ with gr.Blocks() as app:
|
|
204 |
Select Feature to showcase
|
205 |
'''
|
206 |
|
207 |
-
|
208 |
def select_feature(feature):
|
209 |
if feature == 0:
|
210 |
return {
|
@@ -238,8 +246,8 @@ with gr.Blocks() as app:
|
|
238 |
|
239 |
radio_btn.change(select_feature,
|
240 |
[radio_btn],
|
241 |
-
[grad_cam_col, grad_cam_output, missclassified_col, missclassified_img_output, top_pred_cls_col,
|
242 |
-
|
243 |
|
244 |
'''
|
245 |
Launch the app
|
|
|
34 |
]
|
35 |
|
36 |
with gr.Blocks() as app:
|
37 |
+
|
38 |
'''
|
39 |
Select feature interface
|
40 |
'''
|
|
|
59 |
grad_cam_opacity = gr.Slider(0, 1, value=0.4, step=0.1, label="Choose opacity of the gradient")
|
60 |
|
61 |
with gr.Column():
|
62 |
+
grad_cam_btn = gr.Button("Yes, Go Ahead", variant='primary')
|
63 |
|
64 |
with gr.Column(visible=False) as grad_cam_output:
|
65 |
grad_cam_output_gallery = gr.Gallery(value=[], columns=3, label='Output')
|
66 |
# prediction_title = gr.Label(value='')
|
67 |
|
68 |
+
|
69 |
'''
|
70 |
Options for Missclassfied images feature
|
71 |
'''
|
72 |
with gr.Row(visible=False) as missclassified_col:
|
73 |
with gr.Row():
|
74 |
missclassified_img_count = gr.Slider(1, 20, value=5, step=1, label="Choose image count",
|
75 |
+
info="How many missclassified images you want to view?")
|
76 |
+
missclassified_btn = gr.Button("Click to Continue", variant='primary')
|
77 |
with gr.Row(visible=False) as missclassified_img_output:
|
78 |
missclassified_img_output_gallery = gr.Gallery(value=[], columns=5, label='Output')
|
79 |
|
80 |
+
|
81 |
'''
|
82 |
Option for Top prediction classes
|
83 |
'''
|
84 |
with gr.Row(visible=True) as top_pred_cls_col:
|
85 |
with gr.Column():
|
86 |
+
example_images = gr.Gallery(allow_preview=False, label='Select image ', info='', value=[img[0] for img in sample_images], columns=3, rows=2, object_fit='scale_down')
|
87 |
+
|
|
|
|
|
88 |
with gr.Column():
|
89 |
with gr.Row():
|
90 |
top_pred_image = gr.Image(shape=(32, 32), label='Upload Image or Select from the gallery')
|
91 |
top_class_count = gr.Slider(1, 10, value=5, step=1, label="Number of classes to predict")
|
92 |
+
top_class_btn = gr.Button("Submit", variant='primary')
|
93 |
+
tc_clear_btn = gr.ClearButton()
|
94 |
|
95 |
with gr.Row(visible=True) as top_class_output:
|
96 |
+
#top_class_output_img = gr.Image().style(width=256, height=256)
|
97 |
top_class_output_labels = gr.Label(num_top_classes=top_class_count.value, label='Output')
|
98 |
+
|
99 |
+
|
100 |
+
def clear_data():
|
101 |
+
return {
|
102 |
+
top_pred_image: None,
|
103 |
+
top_class_output_labels: None
|
104 |
+
}
|
105 |
+
|
106 |
+
tc_clear_btn.click(clear_data, None, [top_pred_image, top_class_output_labels])
|
107 |
+
|
108 |
def on_select(evt: gr.SelectData):
|
109 |
return {
|
110 |
top_pred_image: sample_images[evt.index][0]
|
111 |
}
|
112 |
+
|
|
|
113 |
example_images.select(on_select, None, top_pred_image)
|
114 |
+
|
|
|
115 |
def top_class_img_upload(input_img, top_class_count):
|
116 |
if input_img is not None:
|
117 |
transform = transforms.ToTensor()
|
|
|
124 |
o = softmax(outputs.flatten())
|
125 |
confidences = {get_dataset_labels()[i]: float(o[i]) for i in range(10)}
|
126 |
top_class_output_labels.num_top_classes = top_class_count
|
127 |
+
#tc_clear_btn.add([top_pred_image, top_class_output_labels])
|
128 |
+
|
129 |
return {
|
130 |
top_class_output: gr.update(visible=True),
|
131 |
+
#top_class_output_img: org_img,
|
132 |
top_class_output_labels: confidences
|
133 |
}
|
134 |
+
|
|
|
135 |
top_class_btn.click(
|
136 |
top_class_img_upload,
|
137 |
[top_pred_image, top_class_count],
|
138 |
[top_class_output, top_class_output_labels]
|
139 |
)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
'''
|
144 |
Missclassified Images feature
|
145 |
'''
|
|
|
|
|
146 |
def show_missclassified_images(img_count):
|
147 |
imgs = []
|
148 |
for i in range(img_count):
|
|
|
166 |
[missclassified_img_output_gallery, missclassified_img_output]
|
167 |
)
|
168 |
|
169 |
+
|
170 |
'''
|
171 |
GradCAM Feature
|
172 |
'''
|
173 |
+
|
|
|
174 |
def grad_cam_submit(img_count, layer_idx, grad_opacity):
|
175 |
+
|
176 |
target_layers = [model.get_layer(-1 * (layer_idx + 1))]
|
177 |
cam = GradCAM(model=model, target_layers=target_layers)
|
178 |
|
|
|
213 |
Select Feature to showcase
|
214 |
'''
|
215 |
|
|
|
216 |
def select_feature(feature):
|
217 |
if feature == 0:
|
218 |
return {
|
|
|
246 |
|
247 |
radio_btn.change(select_feature,
|
248 |
[radio_btn],
|
249 |
+
[grad_cam_col, grad_cam_output, missclassified_col, missclassified_img_output, top_pred_cls_col, top_class_output])
|
250 |
+
|
251 |
|
252 |
'''
|
253 |
Launch the app
|