File size: 6,617 Bytes
d746b98
c2a60dc
280f948
d746b98
 
 
c2a60dc
d746b98
 
c2a60dc
8da99eb
d746b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c7f6c2
d746b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a60dc
 
d746b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a60dc
 
d746b98
c2a60dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d746b98
8fcbf62
 
 
d746b98
 
a2830cb
1c7f6c2
 
 
a5329b5
 
 
a2830cb
d746b98
280f948
9e92a66
c2a60dc
d746b98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import collections
import datetime
import os
import random
import time

import plotly.figure_factory as ff
import json

import pandas as pd
import ray
from PIL import Image
from compiled_jss.CPEnv import CompiledJssEnvCP

from stable_baselines3.common.vec_env import VecEnvWrapper
from torch.distributions import Categorical

import torch
import numpy as np

from MyVecEnv import WrapperRay

import gradio as gr
import docplex.cp.utils_visu as visu
import matplotlib.pyplot as plt


class VecPyTorch(VecEnvWrapper):

    def __init__(self, venv, device):
        super(VecPyTorch, self).__init__(venv)
        self.device = device

    def reset(self):
        return self.venv.reset()

    def step_async(self, actions):
        self.venv.step_async(actions)

    def step_wait(self):
        return self.venv.step_wait()


def make_env(seed, instance):
    def thunk():
        _env = CompiledJssEnvCP(instance)
        return _env

    return thunk


def solve(file):
    random.seed(0)
    np.random.seed(0)
    torch.manual_seed(0)
    num_workers = 1 # only one CPU available
    with torch.inference_mode():
        device = torch.device('cpu')
        actor = torch.jit.load('actor.pt', map_location=device)
        actor.eval()
        start_time = time.time()
        fn_env = [make_env(0, file.name)
                  for _ in range(num_workers)]
        ray_wrapper_env = WrapperRay(lambda n: fn_env[n](),
                                     num_workers, 1, device)
        envs = VecPyTorch(ray_wrapper_env, device)
        current_solution_cost = float('inf')
        current_solution = ''
        obs = envs.reset()
        total_episode = 0
        while total_episode < envs.num_envs:
            logits = actor(obs['interval_rep'], obs['attention_interval_mask'], obs['job_resource_mask'],
                           obs['action_mask'], obs['index_interval'], obs['start_end_tokens'])
            # temperature vector
            if num_workers >= 4:
                temperature = torch.arange(0.5, 2.0, step=(1.5 / num_workers), device=device)
            else:
                temperature = torch.ones(num_workers, device=device)
            logits = logits / temperature[:, None]
            probs = Categorical(logits=logits).probs
            # random sample based on logits
            actions = torch.multinomial(probs, probs.shape[1]).cpu().numpy()
            obs, reward, done, infos = envs.step(actions)
            total_episode += done.sum()
            # total_actions += 1
            # print(f'Episode {total_episode} / {envs.num_envs} - Actions {total_actions}', end='\r')
            for env_idx, info in enumerate(infos):
                if 'makespan' in info and int(info['makespan']) < current_solution_cost:
                    current_solution_cost = int(info['makespan'])
                    current_solution = json.loads(info['solution'])
        total_time = time.time() - start_time
        pretty_output = ""
        for job_id in range(len(current_solution)):
            pretty_output += f"Job {job_id}: {current_solution[job_id]}\n"

        jobs_data = []
        file.seek(0)
        line_str: str = file.readline()
        line_cnt: int = 1
        jobs_count: int = 0
        machines_count: int = 0
        while line_str:
            data = []
            split_data = line_str.split()
            if line_cnt == 1:
                jobs_count, machines_count = int(split_data[0]), int(
                    split_data[1]
                )
            else:
                i = 0
                this_job_op_count = 0
                while i < len(split_data):
                    machine, op_time = int(split_data[i]), int(split_data[i + 1])
                    data.append((machine, op_time))
                    i += 2
                    this_job_op_count += 1
                jobs_data.append(data)
            line_str = file.readline()
            line_cnt += 1
        # convert to integer the current_solution
        current_solution = [[int(x) for x in y] for y in current_solution]
        df = []
        for job_id in range(jobs_count):
            for task_id in range(len(current_solution[job_id])):
                dict_op = dict()
                dict_op["Task"] = "Job {}".format(job_id)
                start_sec = current_solution[job_id][task_id]
                finish_sec = start_sec + jobs_data[job_id][task_id][1]
                dict_op["Start"] = datetime.datetime.fromtimestamp(start_sec)
                dict_op["Finish"] = datetime.datetime.fromtimestamp(finish_sec)
                dict_op["Resource"] = "Machine {}".format(
                    jobs_data[job_id][task_id][0]
                )
                df.append(dict_op)
                i += 1
        fig = None
        colors = [
            tuple([random.random() for _ in range(3)]) for _ in range(machines_count)
        ]
        if len(df) > 0:
            df = pd.DataFrame(df)
            fig = ff.create_gantt(
                df,
                index_col="Resource",
                colors=colors,
                show_colorbar=True,
                group_tasks=True,
            )
            fig.update_yaxes(
                autorange=True
            )
        return pretty_output, fig, str(total_time) + " seconds"

ray.init(log_to_driver=False,
        ignore_reinit_error=True,
        include_dashboard=False)
title = "Job-Shop Scheduling CP RL"
description = "A Job-Shop Scheduling Reinforcement Learning based solver, using an underlying CP model as an " \
              "environment. <br>" \
              "However, due to resource limitations on the HuggingFace platform (a single vCPU available, no GPU), " \
              "the results you obtain here don't represent the full potential of the approach. <br>" \
              "For large instance, we recommend to run this locally outside the interface as it causes a lot of " \
              "For large instance, we recommend to run this locally outside the interface as it causes a lot of " \
              "overhead. <br>" \
              "For fast inference, check out the cached examples below."

article = "<p style='text-align: center'>Article Under Review</p>"
# list all non-hidden files in the 'instances' directory
examples = ['instances/' + f for f in os.listdir('instances') if not f.startswith('.')]
iface = gr.Interface(fn=solve, inputs=gr.File(label="Instance File"), outputs=[gr.Text(label="Solution"), gr.Plot(label="Solution's Gantt Chart"), gr.Text(label="Elapsed Time")], title=title, description=description, article=article, examples=examples)
iface.launch(enable_queue=True)