Spaces:
Sleeping
Sleeping
File size: 12,606 Bytes
2eeebbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
"""
Submission Assessment Module
This module implements a LangGraph agentic pipeline to perform
cross-reference of an uploaded submission package (ZIP file) against a predefined
IND checklist. It supports processing of both PDF (using LlamaParse in the
pre-agent phase) and text files.
A Streamlit interface is provided to allow users to upload a ZIP file and view the assessment report.
"""
import os
import io
import tempfile
from zipfile import ZipFile
import streamlit as st
# Import LlamaParse for PDF processing (assumes it's installed and configured)
from llama_parse import LlamaParse
# Note: These agent classes are implemented for demonstration.
# In a real-world scenario, you might integrate the official LangGraph agent APIs.
# Sample Checklist Configuration (this should be adjusted to your actual IND requirements)
IND_CHECKLIST = {
"Investigator Brochure": {
"file_patterns": ["brochure", "ib"],
"required_keywords": ["pharmacology", "toxicology", "clinical data"]
},
"Clinical Protocol": {
"file_patterns": ["clinical", "protocol"],
"required_keywords": ["study design", "objectives", "patient population", "dosing regimen", "endpoints"]
},
"Form FDA-1571": {
"file_patterns": ["1571", "fda-1571"],
"required_keywords": [
# Sponsor Information
"Name of Sponsor",
"Date of Submission",
"Address 1",
"Sponsor Telephone Number",
# Drug Information
"Name of Drug",
"IND Type",
"Proposed Indication for Use",
# Regulatory Information
"Phase of Clinical Investigation",
"Serial Number",
# Application Contents
"Table of Contents",
"Investigator's Brochure",
"Study protocol",
"Investigator data",
"Facilities data",
"Institutional Review Board data",
"Environmental assessment",
"Pharmacology and Toxicology",
# Signatures and Certifications
#"Person Responsible for Clinical Investigation Monitoring",
#"Person Responsible for Reviewing Safety Information",
"Sponsor or Sponsor's Authorized Representative First Name",
"Sponsor or Sponsor's Authorized Representative Last Name",
"Sponsor or Sponsor's Authorized Representative Title",
"Sponsor or Sponsor's Authorized Representative Telephone Number",
"Date of Sponsor's Signature"
]
}
}
class ChecklistCrossReferenceAgent:
"""
Agent that cross-references the pre-parsed submission package data
against a predefined IND checklist.
Input:
submission_data: list of dicts representing each file with keys:
- "filename": Filename of the document.
- "file_type": e.g., "pdf" or "txt"
- "content": Extracted text from the document.
- "metadata": (Optional) Additional metadata.
checklist: dict representing the IND checklist.
Output:
A mapping of checklist items to their verification status.
"""
def __init__(self, checklist):
self.checklist = checklist
def run(self, submission_data):
cross_reference_result = {}
for document_name, config in self.checklist.items():
file_patterns = config.get("file_patterns", [])
required_keywords = config.get("required_keywords", [])
matched_file = None
# Attempt to find a matching file based on filename patterns.
for file_info in submission_data:
filename = file_info.get("filename", "").lower()
if any(pattern.lower() in filename for pattern in file_patterns):
matched_file = file_info
break
# Build the result per checklist item.
if not matched_file:
# File is completely missing.
cross_reference_result[document_name] = {
"status": "missing",
"missing_fields": required_keywords
}
else:
# File found, check if its content includes the required keywords.
content = matched_file.get("content", "").lower()
missing_fields = []
for keyword in required_keywords:
if keyword.lower() not in content:
missing_fields.append(keyword)
if missing_fields:
cross_reference_result[document_name] = {
"status": "incomplete",
"missing_fields": missing_fields
}
else:
cross_reference_result[document_name] = {
"status": "present",
"missing_fields": []
}
return cross_reference_result
class AssessmentRecommendationAgent:
"""
Agent that analyzes the cross-reference data and produces an
assessment report with recommendations.
Input:
cross_reference_result: dict mapping checklist items to their status.
Output:
A dict containing an overall compliance flag and detailed recommendations.
"""
def run(self, cross_reference_result):
recommendations = {}
overall_compliant = True
for doc, result in cross_reference_result.items():
status = result.get("status")
if status == "missing":
recommendations[doc] = f"{doc} is missing. Please include the document."
overall_compliant = False
elif status == "incomplete":
missing = ", ".join(result.get("missing_fields", []))
recommendations[doc] = (f"{doc} is incomplete. Missing required fields: {missing}. "
"Please update accordingly.")
overall_compliant = False
else:
recommendations[doc] = f"{doc} is complete."
assessment = {
"overall_compliant": overall_compliant,
"recommendations": recommendations
}
return assessment
class OutputFormatterAgent:
"""
Agent that formats the assessment report into a user-friendly format.
This example formats the output as Markdown.
Input:
assessment: dict output from AssessmentRecommendationAgent.
Output:
A formatted string report.
"""
def run(self, assessment):
overall = "Compliant" if assessment.get("overall_compliant") else "Non-Compliant"
lines = []
lines.append("# Submission Package Assessment Report")
lines.append(f"**Overall Compliance:** {overall}\n")
recommendations = assessment.get("recommendations", {})
for doc, rec in recommendations.items():
lines.append(f"### {doc}")
# Format recommendations as bullet points
if "incomplete" in rec.lower():
missing_fields = rec.split("Missing required fields: ")[1].split(".")[0].split(", ")
lines.append("- Status: Incomplete")
lines.append(" - Missing Fields:")
for field in missing_fields:
lines.append(f" - {field}")
else:
lines.append(f"- Status: {rec}")
return "\n".join(lines)
class SupervisorAgent:
"""
Supervisor Agent to orchestrate the agent pipeline in a serial, chained flow:
1. ChecklistCrossReferenceAgent
2. AssessmentRecommendationAgent
3. OutputFormatterAgent
Input:
submission_data: Pre-processed submission package data.
Output:
A final formatted report.
"""
def __init__(self, checklist):
self.checklist_agent = ChecklistCrossReferenceAgent(checklist)
self.assessment_agent = AssessmentRecommendationAgent()
self.formatter_agent = OutputFormatterAgent()
def run(self, submission_data):
# Step 1: Cross-reference the submission data against the checklist.
cross_ref_result = self.checklist_agent.run(submission_data)
# Step 2: Analyze the cross-reference result to produce assessment and recommendations.
assessment_report = self.assessment_agent.run(cross_ref_result)
# Step 3: Format the assessment report for display.
formatted_report = self.formatter_agent.run(assessment_report)
return formatted_report
# --- Helper Functions for ZIP Processing ---
def process_uploaded_zip(uploaded_zip) -> list:
"""
Processes an uploaded ZIP file (as BytesIO) and returns a list of file dictionaries.
Each dictionary contains:
- filename: name of the file.
- file_type: determined from the extension.
- content: extracted text content.
- metadata: additional metadata (currently empty).
For PDF files, uses LlamaParse for parsing.
For TXT files, reads the text directly.
"""
submission_data = []
# Open the uploaded zip file from the BytesIO buffer.
with ZipFile(uploaded_zip) as zip_ref:
for filename in zip_ref.namelist():
file_ext = os.path.splitext(filename)[1].lower()
# Read file bytes
file_bytes = zip_ref.read(filename)
content = ""
if file_ext == ".pdf":
# Create a temporary file for the PDF
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(file_bytes)
tmp.flush()
tmp_path = tmp.name
# Determine number of workers based on file size (in MB)
file_size = os.path.getsize(tmp_path) / (1024 * 1024)
workers = 2 if file_size > 2 else 1
# Initialize LlamaParse and extract content
parser = LlamaParse(
api_key=os.getenv("LLAMA_CLOUD_API_KEY"),
result_type="markdown",
num_workers=workers,
verbose=True
)
try:
# Load and parse the PDF file
llama_documents = parser.load_data(tmp_path)
# Aggregate text from parsed documents
content = "\n".join([doc.text for doc in llama_documents])
except Exception as e:
content = f"Error parsing PDF: {str(e)}"
finally:
os.remove(tmp_path)
elif file_ext == ".txt":
# Decode text content from bytes
try:
content = file_bytes.decode("utf-8")
except UnicodeDecodeError:
content = file_bytes.decode("latin1")
else:
# Skip unsupported file types
continue
submission_data.append({
"filename": filename,
"file_type": file_ext.replace(".", ""),
"content": content,
"metadata": {}
})
return submission_data
# --- Streamlit Interface ---
def main():
st.title("Submission Package Assessment")
st.write(
"""
Upload a ZIP file containing your submission package.
The ZIP file can include PDF and text files.
"""
)
uploaded_file = st.file_uploader("Choose a ZIP file", type=["zip"])
if uploaded_file is not None:
try:
# Process the uploaded ZIP file to extract submission data
submission_data = process_uploaded_zip(uploaded_file)
st.success("File processed successfully!")
# Display a summary of the extracted files
st.subheader("Extracted Files")
for file_info in submission_data:
st.write(f"**{file_info['filename']}** - ({file_info['file_type'].upper()})")
# Instantiate and run the SupervisorAgent
supervisor = SupervisorAgent(IND_CHECKLIST)
assessment_report = supervisor.run(submission_data)
st.subheader("Assessment Report")
st.markdown(assessment_report)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
if __name__ == "__main__":
# To run with Streamlit, use: streamlit run submission_assessment.py
main() |