Spaces:
Sleeping
Sleeping
Initial add from the remote
Browse files- .gitignore +2 -0
- IND-312.pdf +0 -0
- README.md +5 -11
- ind_checklist_stlit.py +144 -0
- preprocessed_docs.json +0 -0
- requirements.txt +11 -0
- streamlit_app.py +65 -0
- submission_assessment.py +346 -0
- submission_assessment0.py +324 -0
- template.md +72 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.cache/
|
IND-312.pdf
ADDED
Binary file (423 kB). View file
|
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
colorTo: yellow
|
6 |
sdk: streamlit
|
7 |
-
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
title: IND Assistant Application
|
2 |
+
emoji: π
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: green
|
|
|
5 |
sdk: streamlit
|
6 |
+
app_port: 8860
|
|
|
|
|
|
|
|
|
|
ind_checklist_stlit.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from typing import List
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores import Qdrant
|
6 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
7 |
+
from langchain_openai.chat_models import ChatOpenAI
|
8 |
+
from langchain.prompts import ChatPromptTemplate
|
9 |
+
from langchain.schema.runnable import RunnablePassthrough
|
10 |
+
from langchain_core.output_parsers import StrOutputParser
|
11 |
+
from operator import itemgetter
|
12 |
+
import nest_asyncio
|
13 |
+
from langchain.schema import Document
|
14 |
+
|
15 |
+
# Apply nest_asyncio for async operations
|
16 |
+
nest_asyncio.apply()
|
17 |
+
|
18 |
+
# Set environment variables for API keys
|
19 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") # OpenAI API Key
|
20 |
+
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv("LLAMA_CLOUD_API_KEY") # Llama Cloud API Key
|
21 |
+
|
22 |
+
# File paths
|
23 |
+
PDF_FILE = "IND-312.pdf"
|
24 |
+
PREPROCESSED_FILE = "preprocessed_docs.json"
|
25 |
+
|
26 |
+
# Load and parse PDF (only for preprocessing)
|
27 |
+
def load_pdf(pdf_path: str) -> List[Document]:
|
28 |
+
"""Loads a PDF, processes it with LlamaParse, and splits it into LangChain documents."""
|
29 |
+
from llama_parse import LlamaParse # Import only if needed
|
30 |
+
|
31 |
+
file_size = os.path.getsize(pdf_path) / (1024 * 1024) # Size in MB
|
32 |
+
workers = 2 if file_size > 2 else 1 # Use 2 workers for PDFs >2MB
|
33 |
+
|
34 |
+
parser = LlamaParse(
|
35 |
+
api_key=os.environ["LLAMA_CLOUD_API_KEY"],
|
36 |
+
result_type="markdown",
|
37 |
+
num_workers=workers,
|
38 |
+
verbose=True
|
39 |
+
)
|
40 |
+
|
41 |
+
# Parse PDF to documents
|
42 |
+
llama_documents = parser.load_data(pdf_path)
|
43 |
+
|
44 |
+
# Convert to LangChain documents
|
45 |
+
documents = [
|
46 |
+
Document(
|
47 |
+
page_content=doc.text,
|
48 |
+
metadata={"source": pdf_path, "page": doc.metadata.get("page_number", 0)}
|
49 |
+
) for doc in llama_documents
|
50 |
+
]
|
51 |
+
|
52 |
+
# Split documents into chunks
|
53 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
54 |
+
chunk_size=500,
|
55 |
+
chunk_overlap=50,
|
56 |
+
length_function=len,
|
57 |
+
)
|
58 |
+
|
59 |
+
return text_splitter.split_documents(documents)
|
60 |
+
|
61 |
+
# Preprocess the PDF and save to JSON (Only if it doesn't exist)
|
62 |
+
def preprocess_pdf(pdf_path: str, output_path: str = PREPROCESSED_FILE):
|
63 |
+
"""Preprocess PDF only if the output file does not exist."""
|
64 |
+
if os.path.exists(output_path):
|
65 |
+
print(f"Preprocessed data already exists at {output_path}. Skipping PDF processing.")
|
66 |
+
return # Skip processing if file already exists
|
67 |
+
|
68 |
+
print("Processing PDF for the first time...")
|
69 |
+
|
70 |
+
documents = load_pdf(pdf_path) # Load and process the PDF
|
71 |
+
|
72 |
+
# Convert documents to JSON format
|
73 |
+
json_data = [{"content": doc.page_content, "metadata": doc.metadata} for doc in documents]
|
74 |
+
|
75 |
+
# Save to file
|
76 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
77 |
+
json.dump(json_data, f, indent=4)
|
78 |
+
|
79 |
+
print(f"Preprocessed PDF saved to {output_path}")
|
80 |
+
|
81 |
+
# Load preprocessed data instead of parsing PDF
|
82 |
+
def load_preprocessed_data(json_path: str) -> List[Document]:
|
83 |
+
"""Load preprocessed data from JSON."""
|
84 |
+
if not os.path.exists(json_path):
|
85 |
+
raise FileNotFoundError(f"Preprocessed file {json_path} not found. Run preprocessing first.")
|
86 |
+
|
87 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
88 |
+
json_data = json.load(f)
|
89 |
+
|
90 |
+
return [Document(page_content=d["content"], metadata=d["metadata"]) for d in json_data]
|
91 |
+
|
92 |
+
# Initialize vector store from preprocessed data
|
93 |
+
def init_vector_store(documents: List[Document]):
|
94 |
+
"""Initialize a vector store using HuggingFace embeddings and Qdrant."""
|
95 |
+
if not documents or not all(doc.page_content.strip() for doc in documents):
|
96 |
+
raise ValueError("No valid documents found for vector storage")
|
97 |
+
|
98 |
+
# Initialize embedding model
|
99 |
+
embedding_model = HuggingFaceBgeEmbeddings(
|
100 |
+
model_name="BAAI/bge-base-en-v1.5",
|
101 |
+
encode_kwargs={'normalize_embeddings': True}
|
102 |
+
)
|
103 |
+
|
104 |
+
return Qdrant.from_documents(
|
105 |
+
documents=documents,
|
106 |
+
embedding=embedding_model,
|
107 |
+
location=":memory:",
|
108 |
+
collection_name="ind312_docs",
|
109 |
+
force_recreate=False
|
110 |
+
)
|
111 |
+
|
112 |
+
# Create RAG chain for retrieval-based Q&A
|
113 |
+
def create_rag_chain(retriever):
|
114 |
+
"""Create a retrieval-augmented generation (RAG) chain for answering questions."""
|
115 |
+
# Load prompt template
|
116 |
+
with open("template.md") as f:
|
117 |
+
template_content = f.read()
|
118 |
+
|
119 |
+
prompt = ChatPromptTemplate.from_template("""
|
120 |
+
You are an FDA regulatory expert. Use this structure for checklists:
|
121 |
+
{template}
|
122 |
+
|
123 |
+
Context from IND-312:
|
124 |
+
{context}
|
125 |
+
|
126 |
+
Question: {question}
|
127 |
+
|
128 |
+
Answer in Markdown with checkboxes (- [ ]). If unsure, say "I can only answer IND related questions.".
|
129 |
+
""")
|
130 |
+
|
131 |
+
return (
|
132 |
+
{
|
133 |
+
"context": itemgetter("question") | retriever,
|
134 |
+
"question": itemgetter("question"),
|
135 |
+
"template": lambda _: template_content # Inject template content
|
136 |
+
}
|
137 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
138 |
+
| {"response": prompt | ChatOpenAI(model="gpt-4") | StrOutputParser()}
|
139 |
+
)
|
140 |
+
|
141 |
+
# Run preprocessing only if executed directly (NOT when imported)
|
142 |
+
if __name__ == "__main__":
|
143 |
+
preprocess_pdf(PDF_FILE)
|
144 |
+
|
preprocessed_docs.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai>=1.0.0
|
2 |
+
langchain>=0.0.148
|
3 |
+
langchain-openai>=0.0.1
|
4 |
+
langchain-community>=0.1.0
|
5 |
+
streamlit>=1.32.0
|
6 |
+
qdrant-client>=0.3.0
|
7 |
+
llama-parse>=0.0.1
|
8 |
+
nest-asyncio>=1.5.6
|
9 |
+
torch>=2.0.0
|
10 |
+
sentence-transformers>=2.2.2
|
11 |
+
langgraph>=0.1.0
|
streamlit_app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import streamlit as st
|
4 |
+
from ind_checklist_stlit import load_preprocessed_data, init_vector_store, create_rag_chain
|
5 |
+
|
6 |
+
# Prevent Streamlit from auto-reloading on file changes
|
7 |
+
os.environ["STREAMLIT_WATCHER_TYPE"] = "none"
|
8 |
+
|
9 |
+
# Define the preprocessed file path
|
10 |
+
PREPROCESSED_FILE = "preprocessed_docs.json"
|
11 |
+
|
12 |
+
# Caching function to prevent redundant RAG processing
|
13 |
+
@st.cache_data
|
14 |
+
def cached_response(question: str):
|
15 |
+
"""Retrieve cached response if available, otherwise compute response."""
|
16 |
+
return st.session_state.rag_chain.invoke({"question": question})["response"]
|
17 |
+
|
18 |
+
def main():
|
19 |
+
st.title("Appian IND Application Assistant")
|
20 |
+
st.markdown("Chat about Investigational New Drug Applications")
|
21 |
+
|
22 |
+
# Button to clear chat history
|
23 |
+
if st.button("Clear Chat History"):
|
24 |
+
st.session_state.messages = []
|
25 |
+
st.rerun()
|
26 |
+
|
27 |
+
# Initialize session state
|
28 |
+
if "messages" not in st.session_state:
|
29 |
+
st.session_state.messages = []
|
30 |
+
|
31 |
+
# Load preprocessed data and initialize the RAG chain
|
32 |
+
if "rag_chain" not in st.session_state:
|
33 |
+
if not os.path.exists(PREPROCESSED_FILE):
|
34 |
+
st.error(f"β Preprocessed file '{PREPROCESSED_FILE}' not found. Please run preprocessing first.")
|
35 |
+
return # Stop execution if preprocessed data is missing
|
36 |
+
|
37 |
+
with st.spinner("π Initializing knowledge base..."):
|
38 |
+
documents = load_preprocessed_data(PREPROCESSED_FILE)
|
39 |
+
vectorstore = init_vector_store(documents)
|
40 |
+
st.session_state.rag_chain = create_rag_chain(vectorstore.as_retriever())
|
41 |
+
|
42 |
+
# Display chat history
|
43 |
+
for message in st.session_state.messages:
|
44 |
+
with st.chat_message(message["role"]):
|
45 |
+
st.markdown(message["content"])
|
46 |
+
|
47 |
+
# Chat input and response handling
|
48 |
+
if prompt := st.chat_input("Ask about IND requirements"):
|
49 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
50 |
+
|
51 |
+
# Display user message
|
52 |
+
with st.chat_message("user"):
|
53 |
+
st.markdown(prompt)
|
54 |
+
|
55 |
+
# Generate response (cached if already asked before)
|
56 |
+
with st.chat_message("assistant"):
|
57 |
+
response = cached_response(prompt)
|
58 |
+
st.markdown(response)
|
59 |
+
|
60 |
+
# Store bot response in chat history
|
61 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
main()
|
65 |
+
|
submission_assessment.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Submission Assessment Module
|
3 |
+
|
4 |
+
This module implements a LangGraph agentic pipeline to perform
|
5 |
+
cross-reference of an uploaded submission package (ZIP file) against a predefined
|
6 |
+
IND checklist. It supports processing of both PDF (using LlamaParse in the
|
7 |
+
pre-agent phase) and text files.
|
8 |
+
|
9 |
+
A Streamlit interface is provided to allow users to upload a ZIP file and view the assessment report.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
import io
|
14 |
+
import tempfile
|
15 |
+
from zipfile import ZipFile
|
16 |
+
import streamlit as st
|
17 |
+
from llama_parse import LlamaParse
|
18 |
+
|
19 |
+
import pickle
|
20 |
+
import hashlib
|
21 |
+
|
22 |
+
|
23 |
+
# Access API key from environment variable
|
24 |
+
LLAMA_CLOUD_API_KEY = os.environ.get("LLAMA_CLOUD_API_KEY")
|
25 |
+
|
26 |
+
# Check if the API key is available
|
27 |
+
if not LLAMA_CLOUD_API_KEY:
|
28 |
+
st.error("LLAMA_CLOUD_API_KEY not found in environment variables. Please set it in your Hugging Face Space secrets.")
|
29 |
+
st.stop()
|
30 |
+
|
31 |
+
# Sample Checklist Configuration (this should be adjusted to your actual IND requirements)
|
32 |
+
IND_CHECKLIST = {
|
33 |
+
"Investigator Brochure": {
|
34 |
+
"file_patterns": ["brochure", "ib"],
|
35 |
+
"required_keywords": ["pharmacology", "toxicology", "clinical data"]
|
36 |
+
},
|
37 |
+
"Clinical Protocol": {
|
38 |
+
"file_patterns": ["clinical", "protocol"],
|
39 |
+
"required_keywords": ["study design", "objectives", "patient population", "dosing regimen", "endpoints"]
|
40 |
+
},
|
41 |
+
"Form FDA-1571": {
|
42 |
+
"file_patterns": ["1571", "fda-1571"],
|
43 |
+
"required_keywords": [
|
44 |
+
# Sponsor Information
|
45 |
+
"Name of Sponsor",
|
46 |
+
"Date of Submission",
|
47 |
+
"Address 1",
|
48 |
+
"Sponsor Telephone Number",
|
49 |
+
# Drug Information
|
50 |
+
"Name of Drug",
|
51 |
+
"IND Type",
|
52 |
+
"Proposed Indication for Use",
|
53 |
+
# Regulatory Information
|
54 |
+
"Phase of Clinical Investigation",
|
55 |
+
"Serial Number",
|
56 |
+
# Application Contents
|
57 |
+
"Table of Contents",
|
58 |
+
"Investigator's Brochure",
|
59 |
+
"Study protocol",
|
60 |
+
"Investigator data",
|
61 |
+
"Facilities data",
|
62 |
+
"Institutional Review Board data",
|
63 |
+
"Environmental assessment",
|
64 |
+
"Pharmacology and Toxicology",
|
65 |
+
# Signatures and Certifications
|
66 |
+
#"Person Responsible for Clinical Investigation Monitoring",
|
67 |
+
#"Person Responsible for Reviewing Safety Information",
|
68 |
+
"Sponsor or Sponsor's Authorized Representative First Name",
|
69 |
+
"Sponsor or Sponsor's Authorized Representative Last Name",
|
70 |
+
"Sponsor or Sponsor's Authorized Representative Title",
|
71 |
+
"Sponsor or Sponsor's Authorized Representative Telephone Number",
|
72 |
+
"Date of Sponsor's Signature"
|
73 |
+
]
|
74 |
+
}
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
class ChecklistCrossReferenceAgent:
|
79 |
+
"""
|
80 |
+
Agent that cross-references the pre-parsed submission package data
|
81 |
+
against a predefined IND checklist.
|
82 |
+
|
83 |
+
Input:
|
84 |
+
submission_data: list of dicts representing each file with keys:
|
85 |
+
- "filename": Filename of the document.
|
86 |
+
- "file_type": e.g., "pdf" or "txt"
|
87 |
+
- "content": Extracted text from the document.
|
88 |
+
- "metadata": (Optional) Additional metadata.
|
89 |
+
checklist: dict representing the IND checklist.
|
90 |
+
Output:
|
91 |
+
A mapping of checklist items to their verification status.
|
92 |
+
"""
|
93 |
+
def __init__(self, checklist):
|
94 |
+
self.checklist = checklist
|
95 |
+
|
96 |
+
def run(self, submission_data):
|
97 |
+
cross_reference_result = {}
|
98 |
+
for document_name, config in self.checklist.items():
|
99 |
+
file_patterns = config.get("file_patterns", [])
|
100 |
+
required_keywords = config.get("required_keywords", [])
|
101 |
+
matched_file = None
|
102 |
+
|
103 |
+
# Attempt to find a matching file based on filename patterns.
|
104 |
+
for file_info in submission_data:
|
105 |
+
filename = file_info.get("filename", "").lower()
|
106 |
+
if any(pattern.lower() in filename for pattern in file_patterns):
|
107 |
+
matched_file = file_info
|
108 |
+
break
|
109 |
+
|
110 |
+
# Build the result per checklist item.
|
111 |
+
if not matched_file:
|
112 |
+
# File is completely missing.
|
113 |
+
cross_reference_result[document_name] = {
|
114 |
+
"status": "missing",
|
115 |
+
"missing_fields": required_keywords
|
116 |
+
}
|
117 |
+
else:
|
118 |
+
# File found, check if its content includes the required keywords.
|
119 |
+
content = matched_file.get("content", "").lower()
|
120 |
+
missing_fields = []
|
121 |
+
for keyword in required_keywords:
|
122 |
+
if keyword.lower() not in content:
|
123 |
+
missing_fields.append(keyword)
|
124 |
+
if missing_fields:
|
125 |
+
cross_reference_result[document_name] = {
|
126 |
+
"status": "incomplete",
|
127 |
+
"missing_fields": missing_fields
|
128 |
+
}
|
129 |
+
else:
|
130 |
+
cross_reference_result[document_name] = {
|
131 |
+
"status": "present",
|
132 |
+
"missing_fields": []
|
133 |
+
}
|
134 |
+
return cross_reference_result
|
135 |
+
|
136 |
+
|
137 |
+
class AssessmentRecommendationAgent:
|
138 |
+
"""
|
139 |
+
Agent that analyzes the cross-reference data and produces an
|
140 |
+
assessment report with recommendations.
|
141 |
+
|
142 |
+
Input:
|
143 |
+
cross_reference_result: dict mapping checklist items to their status.
|
144 |
+
Output:
|
145 |
+
A dict containing an overall compliance flag and detailed recommendations.
|
146 |
+
"""
|
147 |
+
def run(self, cross_reference_result):
|
148 |
+
recommendations = {}
|
149 |
+
overall_compliant = True
|
150 |
+
|
151 |
+
for doc, result in cross_reference_result.items():
|
152 |
+
status = result.get("status")
|
153 |
+
if status == "missing":
|
154 |
+
recommendations[doc] = f"{doc} is missing. Please include the document."
|
155 |
+
overall_compliant = False
|
156 |
+
elif status == "incomplete":
|
157 |
+
missing = ", ".join(result.get("missing_fields", []))
|
158 |
+
recommendations[doc] = (f"{doc} is incomplete. Missing required fields: {missing}. "
|
159 |
+
"Please update accordingly.")
|
160 |
+
overall_compliant = False
|
161 |
+
else:
|
162 |
+
recommendations[doc] = f"{doc} is complete."
|
163 |
+
assessment = {
|
164 |
+
"overall_compliant": overall_compliant,
|
165 |
+
"recommendations": recommendations
|
166 |
+
}
|
167 |
+
return assessment
|
168 |
+
|
169 |
+
|
170 |
+
class OutputFormatterAgent:
|
171 |
+
"""
|
172 |
+
Agent that formats the assessment report into a user-friendly format.
|
173 |
+
This example formats the output as Markdown.
|
174 |
+
|
175 |
+
Input:
|
176 |
+
assessment: dict output from AssessmentRecommendationAgent.
|
177 |
+
Output:
|
178 |
+
A formatted string report.
|
179 |
+
"""
|
180 |
+
def run(self, assessment):
|
181 |
+
overall = "Compliant" if assessment.get("overall_compliant") else "Non-Compliant"
|
182 |
+
lines = []
|
183 |
+
lines.append("# Submission Package Assessment Report")
|
184 |
+
lines.append(f"**Overall Compliance:** {overall}\n")
|
185 |
+
recommendations = assessment.get("recommendations", {})
|
186 |
+
for doc, rec in recommendations.items():
|
187 |
+
lines.append(f"### {doc}")
|
188 |
+
# Format recommendations as bullet points
|
189 |
+
if "incomplete" in rec.lower():
|
190 |
+
missing_fields = rec.split("Missing required fields: ")[1].split(".")[0].split(", ")
|
191 |
+
lines.append("- Status: Incomplete")
|
192 |
+
lines.append(" - Missing Fields:")
|
193 |
+
for field in missing_fields:
|
194 |
+
lines.append(f" - {field}")
|
195 |
+
else:
|
196 |
+
lines.append(f"- Status: {rec}")
|
197 |
+
return "\n".join(lines)
|
198 |
+
|
199 |
+
|
200 |
+
class SupervisorAgent:
|
201 |
+
"""
|
202 |
+
Supervisor Agent to orchestrate the agent pipeline in a serial, chained flow:
|
203 |
+
|
204 |
+
1. ChecklistCrossReferenceAgent
|
205 |
+
2. AssessmentRecommendationAgent
|
206 |
+
3. OutputFormatterAgent
|
207 |
+
|
208 |
+
Input:
|
209 |
+
submission_data: Pre-processed submission package data.
|
210 |
+
Output:
|
211 |
+
A final formatted report.
|
212 |
+
"""
|
213 |
+
def __init__(self, checklist):
|
214 |
+
self.checklist_agent = ChecklistCrossReferenceAgent(checklist)
|
215 |
+
self.assessment_agent = AssessmentRecommendationAgent()
|
216 |
+
self.formatter_agent = OutputFormatterAgent()
|
217 |
+
|
218 |
+
def run(self, submission_data):
|
219 |
+
# Step 1: Cross-reference the submission data against the checklist.
|
220 |
+
cross_ref_result = self.checklist_agent.run(submission_data)
|
221 |
+
# Step 2: Analyze the cross-reference result to produce assessment and recommendations.
|
222 |
+
assessment_report = self.assessment_agent.run(cross_ref_result)
|
223 |
+
# Step 3: Format the assessment report for display.
|
224 |
+
formatted_report = self.formatter_agent.run(assessment_report)
|
225 |
+
return formatted_report
|
226 |
+
|
227 |
+
|
228 |
+
# --- Helper Functions for ZIP Processing ---
|
229 |
+
|
230 |
+
def process_uploaded_zip(uploaded_zip) -> list:
|
231 |
+
"""
|
232 |
+
Processes an uploaded ZIP file, caches embeddings, and returns a list of file dictionaries.
|
233 |
+
"""
|
234 |
+
submission_data = []
|
235 |
+
|
236 |
+
with ZipFile(uploaded_zip) as zip_ref:
|
237 |
+
for filename in zip_ref.namelist():
|
238 |
+
file_ext = os.path.splitext(filename)[1].lower()
|
239 |
+
file_bytes = zip_ref.read(filename)
|
240 |
+
content = ""
|
241 |
+
|
242 |
+
# Generate a unique cache key based on the file content
|
243 |
+
file_hash = hashlib.md5(file_bytes).hexdigest()
|
244 |
+
cache_key = f"{filename}_{file_hash}"
|
245 |
+
cache_file = f".cache/{cache_key}.pkl" # Cache file path
|
246 |
+
|
247 |
+
# Create the cache directory if it doesn't exist
|
248 |
+
os.makedirs(".cache", exist_ok=True)
|
249 |
+
|
250 |
+
if os.path.exists(cache_file):
|
251 |
+
# Load from cache
|
252 |
+
print(f"Loading {filename} from cache")
|
253 |
+
try:
|
254 |
+
with open(cache_file, "rb") as f:
|
255 |
+
content = pickle.load(f)
|
256 |
+
except Exception as e:
|
257 |
+
st.error(f"Error loading {filename} from cache: {str(e)}")
|
258 |
+
content = "" # Or handle the error as appropriate
|
259 |
+
else:
|
260 |
+
# Process and cache
|
261 |
+
print(f"Processing {filename} and caching")
|
262 |
+
if file_ext == ".pdf":
|
263 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
264 |
+
tmp.write(file_bytes)
|
265 |
+
tmp.flush()
|
266 |
+
tmp_path = tmp.name
|
267 |
+
file_size = os.path.getsize(tmp_path) / (1024 * 1024)
|
268 |
+
workers = 2 if file_size > 2 else 1
|
269 |
+
try:
|
270 |
+
parser = LlamaParse(
|
271 |
+
api_key=LLAMA_CLOUD_API_KEY,
|
272 |
+
result_type="markdown",
|
273 |
+
num_workers=workers,
|
274 |
+
verbose=True
|
275 |
+
)
|
276 |
+
llama_documents = parser.load_data(tmp_path)
|
277 |
+
content = "\n".join([doc.text for doc in llama_documents])
|
278 |
+
except Exception as e:
|
279 |
+
content = f"Error parsing PDF: {str(e)}"
|
280 |
+
st.error(f"Error parsing PDF {filename}: {str(e)}")
|
281 |
+
finally:
|
282 |
+
os.remove(tmp_path)
|
283 |
+
elif file_ext == ".txt":
|
284 |
+
try:
|
285 |
+
content = file_bytes.decode("utf-8")
|
286 |
+
except UnicodeDecodeError:
|
287 |
+
content = file_bytes.decode("latin1")
|
288 |
+
except Exception as e:
|
289 |
+
content = f"Error decoding text file {filename}: {str(e)}"
|
290 |
+
st.error(f"Error decoding text file {filename}: {str(e)}")
|
291 |
+
else:
|
292 |
+
continue # Skip unsupported file types
|
293 |
+
|
294 |
+
# Save to cache
|
295 |
+
try:
|
296 |
+
with open(cache_file, "wb") as f:
|
297 |
+
pickle.dump(content, f)
|
298 |
+
except Exception as e:
|
299 |
+
st.error(f"Error saving {filename} to cache: {str(e)}")
|
300 |
+
|
301 |
+
submission_data.append({
|
302 |
+
"filename": filename,
|
303 |
+
"file_type": file_ext.replace(".", ""),
|
304 |
+
"content": content,
|
305 |
+
"metadata": {}
|
306 |
+
})
|
307 |
+
return submission_data
|
308 |
+
|
309 |
+
|
310 |
+
# --- Streamlit Interface ---
|
311 |
+
|
312 |
+
def main():
|
313 |
+
st.title("Submission Package Assessment")
|
314 |
+
st.write(
|
315 |
+
"""
|
316 |
+
Upload a ZIP file containing your submission package.
|
317 |
+
The ZIP file can include PDF and text files.
|
318 |
+
"""
|
319 |
+
)
|
320 |
+
|
321 |
+
uploaded_file = st.file_uploader("Choose a ZIP file", type=["zip"])
|
322 |
+
|
323 |
+
if uploaded_file is not None:
|
324 |
+
try:
|
325 |
+
# Process the uploaded ZIP file to extract submission data
|
326 |
+
submission_data = process_uploaded_zip(uploaded_file)
|
327 |
+
st.success("File processed successfully!")
|
328 |
+
|
329 |
+
# Display a summary of the extracted files
|
330 |
+
st.subheader("Extracted Files")
|
331 |
+
for file_info in submission_data:
|
332 |
+
st.write(f"**{file_info['filename']}** - ({file_info['file_type'].upper()})")
|
333 |
+
|
334 |
+
# Instantiate and run the SupervisorAgent
|
335 |
+
supervisor = SupervisorAgent(IND_CHECKLIST)
|
336 |
+
assessment_report = supervisor.run(submission_data)
|
337 |
+
|
338 |
+
st.subheader("Assessment Report")
|
339 |
+
st.markdown(assessment_report)
|
340 |
+
except Exception as e:
|
341 |
+
st.error(f"Error processing file: {str(e)}")
|
342 |
+
|
343 |
+
|
344 |
+
if __name__ == "__main__":
|
345 |
+
# To run with Streamlit, use: streamlit run submission_assessment.py
|
346 |
+
main()
|
submission_assessment0.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Submission Assessment Module
|
3 |
+
|
4 |
+
This module implements a LangGraph agentic pipeline to perform
|
5 |
+
cross-reference of an uploaded submission package (ZIP file) against a predefined
|
6 |
+
IND checklist. It supports processing of both PDF (using LlamaParse in the
|
7 |
+
pre-agent phase) and text files.
|
8 |
+
|
9 |
+
A Streamlit interface is provided to allow users to upload a ZIP file and view the assessment report.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
import io
|
14 |
+
import tempfile
|
15 |
+
from zipfile import ZipFile
|
16 |
+
|
17 |
+
import streamlit as st
|
18 |
+
|
19 |
+
# Import LlamaParse for PDF processing (assumes it's installed and configured)
|
20 |
+
from llama_parse import LlamaParse
|
21 |
+
|
22 |
+
# Note: These agent classes are implemented for demonstration.
|
23 |
+
# In a real-world scenario, you might integrate the official LangGraph agent APIs.
|
24 |
+
|
25 |
+
# Sample Checklist Configuration (this should be adjusted to your actual IND requirements)
|
26 |
+
IND_CHECKLIST = {
|
27 |
+
"Investigator Brochure": {
|
28 |
+
"file_patterns": ["brochure", "ib"],
|
29 |
+
"required_keywords": ["pharmacology", "toxicology", "clinical data"]
|
30 |
+
},
|
31 |
+
"Clinical Protocol": {
|
32 |
+
"file_patterns": ["clinical", "protocol"],
|
33 |
+
"required_keywords": ["study design", "objectives", "patient population", "dosing regimen", "endpoints"]
|
34 |
+
},
|
35 |
+
"Form FDA-1571": {
|
36 |
+
"file_patterns": ["1571", "fda-1571"],
|
37 |
+
"required_keywords": [
|
38 |
+
# Sponsor Information
|
39 |
+
"Name of Sponsor",
|
40 |
+
"Date of Submission",
|
41 |
+
"Address 1",
|
42 |
+
"Sponsor Telephone Number",
|
43 |
+
# Drug Information
|
44 |
+
"Name of Drug",
|
45 |
+
"IND Type",
|
46 |
+
"Proposed Indication for Use",
|
47 |
+
# Regulatory Information
|
48 |
+
"Phase of Clinical Investigation",
|
49 |
+
"Serial Number",
|
50 |
+
# Application Contents
|
51 |
+
"Table of Contents",
|
52 |
+
"Investigator's Brochure",
|
53 |
+
"Study protocol",
|
54 |
+
"Investigator data",
|
55 |
+
"Facilities data",
|
56 |
+
"Institutional Review Board data",
|
57 |
+
"Environmental assessment",
|
58 |
+
"Pharmacology and Toxicology",
|
59 |
+
# Signatures and Certifications
|
60 |
+
#"Person Responsible for Clinical Investigation Monitoring",
|
61 |
+
#"Person Responsible for Reviewing Safety Information",
|
62 |
+
"Sponsor or Sponsor's Authorized Representative First Name",
|
63 |
+
"Sponsor or Sponsor's Authorized Representative Last Name",
|
64 |
+
"Sponsor or Sponsor's Authorized Representative Title",
|
65 |
+
"Sponsor or Sponsor's Authorized Representative Telephone Number",
|
66 |
+
"Date of Sponsor's Signature"
|
67 |
+
]
|
68 |
+
}
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
class ChecklistCrossReferenceAgent:
|
73 |
+
"""
|
74 |
+
Agent that cross-references the pre-parsed submission package data
|
75 |
+
against a predefined IND checklist.
|
76 |
+
|
77 |
+
Input:
|
78 |
+
submission_data: list of dicts representing each file with keys:
|
79 |
+
- "filename": Filename of the document.
|
80 |
+
- "file_type": e.g., "pdf" or "txt"
|
81 |
+
- "content": Extracted text from the document.
|
82 |
+
- "metadata": (Optional) Additional metadata.
|
83 |
+
checklist: dict representing the IND checklist.
|
84 |
+
Output:
|
85 |
+
A mapping of checklist items to their verification status.
|
86 |
+
"""
|
87 |
+
def __init__(self, checklist):
|
88 |
+
self.checklist = checklist
|
89 |
+
|
90 |
+
def run(self, submission_data):
|
91 |
+
cross_reference_result = {}
|
92 |
+
for document_name, config in self.checklist.items():
|
93 |
+
file_patterns = config.get("file_patterns", [])
|
94 |
+
required_keywords = config.get("required_keywords", [])
|
95 |
+
matched_file = None
|
96 |
+
|
97 |
+
# Attempt to find a matching file based on filename patterns.
|
98 |
+
for file_info in submission_data:
|
99 |
+
filename = file_info.get("filename", "").lower()
|
100 |
+
if any(pattern.lower() in filename for pattern in file_patterns):
|
101 |
+
matched_file = file_info
|
102 |
+
break
|
103 |
+
|
104 |
+
# Build the result per checklist item.
|
105 |
+
if not matched_file:
|
106 |
+
# File is completely missing.
|
107 |
+
cross_reference_result[document_name] = {
|
108 |
+
"status": "missing",
|
109 |
+
"missing_fields": required_keywords
|
110 |
+
}
|
111 |
+
else:
|
112 |
+
# File found, check if its content includes the required keywords.
|
113 |
+
content = matched_file.get("content", "").lower()
|
114 |
+
missing_fields = []
|
115 |
+
for keyword in required_keywords:
|
116 |
+
if keyword.lower() not in content:
|
117 |
+
missing_fields.append(keyword)
|
118 |
+
if missing_fields:
|
119 |
+
cross_reference_result[document_name] = {
|
120 |
+
"status": "incomplete",
|
121 |
+
"missing_fields": missing_fields
|
122 |
+
}
|
123 |
+
else:
|
124 |
+
cross_reference_result[document_name] = {
|
125 |
+
"status": "present",
|
126 |
+
"missing_fields": []
|
127 |
+
}
|
128 |
+
return cross_reference_result
|
129 |
+
|
130 |
+
|
131 |
+
class AssessmentRecommendationAgent:
|
132 |
+
"""
|
133 |
+
Agent that analyzes the cross-reference data and produces an
|
134 |
+
assessment report with recommendations.
|
135 |
+
|
136 |
+
Input:
|
137 |
+
cross_reference_result: dict mapping checklist items to their status.
|
138 |
+
Output:
|
139 |
+
A dict containing an overall compliance flag and detailed recommendations.
|
140 |
+
"""
|
141 |
+
def run(self, cross_reference_result):
|
142 |
+
recommendations = {}
|
143 |
+
overall_compliant = True
|
144 |
+
|
145 |
+
for doc, result in cross_reference_result.items():
|
146 |
+
status = result.get("status")
|
147 |
+
if status == "missing":
|
148 |
+
recommendations[doc] = f"{doc} is missing. Please include the document."
|
149 |
+
overall_compliant = False
|
150 |
+
elif status == "incomplete":
|
151 |
+
missing = ", ".join(result.get("missing_fields", []))
|
152 |
+
recommendations[doc] = (f"{doc} is incomplete. Missing required fields: {missing}. "
|
153 |
+
"Please update accordingly.")
|
154 |
+
overall_compliant = False
|
155 |
+
else:
|
156 |
+
recommendations[doc] = f"{doc} is complete."
|
157 |
+
assessment = {
|
158 |
+
"overall_compliant": overall_compliant,
|
159 |
+
"recommendations": recommendations
|
160 |
+
}
|
161 |
+
return assessment
|
162 |
+
|
163 |
+
|
164 |
+
class OutputFormatterAgent:
|
165 |
+
"""
|
166 |
+
Agent that formats the assessment report into a user-friendly format.
|
167 |
+
This example formats the output as Markdown.
|
168 |
+
|
169 |
+
Input:
|
170 |
+
assessment: dict output from AssessmentRecommendationAgent.
|
171 |
+
Output:
|
172 |
+
A formatted string report.
|
173 |
+
"""
|
174 |
+
def run(self, assessment):
|
175 |
+
overall = "Compliant" if assessment.get("overall_compliant") else "Non-Compliant"
|
176 |
+
lines = []
|
177 |
+
lines.append("# Submission Package Assessment Report")
|
178 |
+
lines.append(f"**Overall Compliance:** {overall}\n")
|
179 |
+
recommendations = assessment.get("recommendations", {})
|
180 |
+
for doc, rec in recommendations.items():
|
181 |
+
lines.append(f"### {doc}")
|
182 |
+
# Format recommendations as bullet points
|
183 |
+
if "incomplete" in rec.lower():
|
184 |
+
missing_fields = rec.split("Missing required fields: ")[1].split(".")[0].split(", ")
|
185 |
+
lines.append("- Status: Incomplete")
|
186 |
+
lines.append(" - Missing Fields:")
|
187 |
+
for field in missing_fields:
|
188 |
+
lines.append(f" - {field}")
|
189 |
+
else:
|
190 |
+
lines.append(f"- Status: {rec}")
|
191 |
+
return "\n".join(lines)
|
192 |
+
|
193 |
+
|
194 |
+
class SupervisorAgent:
|
195 |
+
"""
|
196 |
+
Supervisor Agent to orchestrate the agent pipeline in a serial, chained flow:
|
197 |
+
|
198 |
+
1. ChecklistCrossReferenceAgent
|
199 |
+
2. AssessmentRecommendationAgent
|
200 |
+
3. OutputFormatterAgent
|
201 |
+
|
202 |
+
Input:
|
203 |
+
submission_data: Pre-processed submission package data.
|
204 |
+
Output:
|
205 |
+
A final formatted report.
|
206 |
+
"""
|
207 |
+
def __init__(self, checklist):
|
208 |
+
self.checklist_agent = ChecklistCrossReferenceAgent(checklist)
|
209 |
+
self.assessment_agent = AssessmentRecommendationAgent()
|
210 |
+
self.formatter_agent = OutputFormatterAgent()
|
211 |
+
|
212 |
+
def run(self, submission_data):
|
213 |
+
# Step 1: Cross-reference the submission data against the checklist.
|
214 |
+
cross_ref_result = self.checklist_agent.run(submission_data)
|
215 |
+
# Step 2: Analyze the cross-reference result to produce assessment and recommendations.
|
216 |
+
assessment_report = self.assessment_agent.run(cross_ref_result)
|
217 |
+
# Step 3: Format the assessment report for display.
|
218 |
+
formatted_report = self.formatter_agent.run(assessment_report)
|
219 |
+
return formatted_report
|
220 |
+
|
221 |
+
|
222 |
+
# --- Helper Functions for ZIP Processing ---
|
223 |
+
|
224 |
+
def process_uploaded_zip(uploaded_zip) -> list:
|
225 |
+
"""
|
226 |
+
Processes an uploaded ZIP file (as BytesIO) and returns a list of file dictionaries.
|
227 |
+
Each dictionary contains:
|
228 |
+
- filename: name of the file.
|
229 |
+
- file_type: determined from the extension.
|
230 |
+
- content: extracted text content.
|
231 |
+
- metadata: additional metadata (currently empty).
|
232 |
+
For PDF files, uses LlamaParse for parsing.
|
233 |
+
For TXT files, reads the text directly.
|
234 |
+
"""
|
235 |
+
submission_data = []
|
236 |
+
|
237 |
+
# Open the uploaded zip file from the BytesIO buffer.
|
238 |
+
with ZipFile(uploaded_zip) as zip_ref:
|
239 |
+
for filename in zip_ref.namelist():
|
240 |
+
file_ext = os.path.splitext(filename)[1].lower()
|
241 |
+
# Read file bytes
|
242 |
+
file_bytes = zip_ref.read(filename)
|
243 |
+
content = ""
|
244 |
+
if file_ext == ".pdf":
|
245 |
+
# Create a temporary file for the PDF
|
246 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
247 |
+
tmp.write(file_bytes)
|
248 |
+
tmp.flush()
|
249 |
+
tmp_path = tmp.name
|
250 |
+
# Determine number of workers based on file size (in MB)
|
251 |
+
file_size = os.path.getsize(tmp_path) / (1024 * 1024)
|
252 |
+
workers = 2 if file_size > 2 else 1
|
253 |
+
# Initialize LlamaParse and extract content
|
254 |
+
parser = LlamaParse(
|
255 |
+
api_key=os.getenv("LLAMA_CLOUD_API_KEY"),
|
256 |
+
result_type="markdown",
|
257 |
+
num_workers=workers,
|
258 |
+
verbose=True
|
259 |
+
)
|
260 |
+
try:
|
261 |
+
# Load and parse the PDF file
|
262 |
+
llama_documents = parser.load_data(tmp_path)
|
263 |
+
# Aggregate text from parsed documents
|
264 |
+
content = "\n".join([doc.text for doc in llama_documents])
|
265 |
+
except Exception as e:
|
266 |
+
content = f"Error parsing PDF: {str(e)}"
|
267 |
+
finally:
|
268 |
+
os.remove(tmp_path)
|
269 |
+
elif file_ext == ".txt":
|
270 |
+
# Decode text content from bytes
|
271 |
+
try:
|
272 |
+
content = file_bytes.decode("utf-8")
|
273 |
+
except UnicodeDecodeError:
|
274 |
+
content = file_bytes.decode("latin1")
|
275 |
+
else:
|
276 |
+
# Skip unsupported file types
|
277 |
+
continue
|
278 |
+
|
279 |
+
submission_data.append({
|
280 |
+
"filename": filename,
|
281 |
+
"file_type": file_ext.replace(".", ""),
|
282 |
+
"content": content,
|
283 |
+
"metadata": {}
|
284 |
+
})
|
285 |
+
return submission_data
|
286 |
+
|
287 |
+
|
288 |
+
# --- Streamlit Interface ---
|
289 |
+
|
290 |
+
def main():
|
291 |
+
st.title("Submission Package Assessment")
|
292 |
+
st.write(
|
293 |
+
"""
|
294 |
+
Upload a ZIP file containing your submission package.
|
295 |
+
The ZIP file can include PDF and text files.
|
296 |
+
"""
|
297 |
+
)
|
298 |
+
|
299 |
+
uploaded_file = st.file_uploader("Choose a ZIP file", type=["zip"])
|
300 |
+
|
301 |
+
if uploaded_file is not None:
|
302 |
+
try:
|
303 |
+
# Process the uploaded ZIP file to extract submission data
|
304 |
+
submission_data = process_uploaded_zip(uploaded_file)
|
305 |
+
st.success("File processed successfully!")
|
306 |
+
|
307 |
+
# Display a summary of the extracted files
|
308 |
+
st.subheader("Extracted Files")
|
309 |
+
for file_info in submission_data:
|
310 |
+
st.write(f"**{file_info['filename']}** - ({file_info['file_type'].upper()})")
|
311 |
+
|
312 |
+
# Instantiate and run the SupervisorAgent
|
313 |
+
supervisor = SupervisorAgent(IND_CHECKLIST)
|
314 |
+
assessment_report = supervisor.run(submission_data)
|
315 |
+
|
316 |
+
st.subheader("Assessment Report")
|
317 |
+
st.markdown(assessment_report)
|
318 |
+
except Exception as e:
|
319 |
+
st.error(f"Error processing file: {str(e)}")
|
320 |
+
|
321 |
+
|
322 |
+
if __name__ == "__main__":
|
323 |
+
# To run with Streamlit, use: streamlit run submission_assessment.py
|
324 |
+
main()
|
template.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1. Pre-IND Meeting Preparation
|
2 |
+
Request a Pre-IND Meeting: Schedule a meeting with the FDA to discuss your IND submission.
|
3 |
+
|
4 |
+
Prepare Meeting Package: Include proposed clinical trial design, preclinical data, manufacturing information, and any other relevant data.
|
5 |
+
|
6 |
+
Submit Questions: Prepare a list of specific questions for the FDA regarding your IND submission.
|
7 |
+
|
8 |
+
2. Form FDA 1571
|
9 |
+
Complete Form FDA 1571: Ensure all sections are filled out accurately, including sponsor information, drug information, and clinical trial details.
|
10 |
+
|
11 |
+
Signature: Obtain the required signature from the sponsor or authorized representative.
|
12 |
+
|
13 |
+
3. Table of Contents
|
14 |
+
Create a Comprehensive Table of Contents: Organize the IND submission with clear sections and page numbers for easy navigation.
|
15 |
+
|
16 |
+
4. Introductory Statement and General Investigational Plan
|
17 |
+
Introductory Statement: Provide a brief overview of the drug, including its name, structure, and pharmacological class.
|
18 |
+
|
19 |
+
General Investigational Plan: Outline the clinical development plan, including the objectives and duration of the proposed studies.
|
20 |
+
|
21 |
+
5. Investigator's Brochure
|
22 |
+
Compile the Investigator's Brochure: Include all relevant information about the drug, such as its formulation, pharmacology, toxicology, and clinical data.
|
23 |
+
|
24 |
+
Update as Necessary: Ensure the brochure is up-to-date with the latest data.
|
25 |
+
|
26 |
+
6. Clinical Protocol
|
27 |
+
Develop Clinical Protocol: Detail the study design, including objectives, patient population, dosing regimen, and endpoints.
|
28 |
+
|
29 |
+
Inclusion/Exclusion Criteria: Clearly define the criteria for patient selection.
|
30 |
+
|
31 |
+
Safety Monitoring: Outline the procedures for monitoring patient safety.
|
32 |
+
|
33 |
+
7. Chemistry, Manufacturing, and Control (CMC) Information
|
34 |
+
Drug Substance Information: Provide details on the drug substance, including its manufacture, characterization, and controls.
|
35 |
+
|
36 |
+
Drug Product Information: Include information on the drug product, such as formulation, manufacturing process, and specifications.
|
37 |
+
|
38 |
+
Stability Data: Submit stability data to support the proposed shelf life of the drug.
|
39 |
+
|
40 |
+
Labeling: Provide draft labeling for the investigational drug.
|
41 |
+
|
42 |
+
8. Pharmacology and Toxicology Data
|
43 |
+
Pharmacology Studies: Submit data from in vitro and in vivo studies that demonstrate the drug's pharmacological effects.
|
44 |
+
|
45 |
+
Toxicology Studies: Include data from acute, subacute, and chronic toxicity studies, as well as reproductive and genotoxicity studies.
|
46 |
+
|
47 |
+
Safety Pharmacology: Provide data on the drug's effects on vital organ systems.
|
48 |
+
|
49 |
+
9. Previous Human Experience
|
50 |
+
Summarize Previous Human Experience: If applicable, include data from previous clinical trials or use in humans.
|
51 |
+
|
52 |
+
Safety and Efficacy Data: Highlight any relevant safety and efficacy findings from prior studies.
|
53 |
+
|
54 |
+
10. Additional Information
|
55 |
+
Environmental Assessment: Submit an environmental assessment or claim an exclusion if applicable.
|
56 |
+
|
57 |
+
Special Considerations: Include any additional information that may be relevant, such as data from pediatric studies or risk management plans.
|
58 |
+
|
59 |
+
11. Review and Quality Control
|
60 |
+
Internal Review: Conduct a thorough internal review of the IND submission to ensure accuracy and completeness.
|
61 |
+
|
62 |
+
Quality Control: Verify that all data and documents meet regulatory standards and guidelines.
|
63 |
+
|
64 |
+
12. Submission to FDA
|
65 |
+
Compile the IND Submission: Assemble all sections into a single, well-organized submission.
|
66 |
+
|
67 |
+
Submit to FDA: Send the IND submission to the appropriate FDA division via the required submission method (e.g., electronic submission).
|
68 |
+
|
69 |
+
Confirmation of Receipt: Obtain confirmation from the FDA that the IND has been received and is under review.
|
70 |
+
|
71 |
+
|
72 |
+
|