Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -40,43 +40,48 @@ def load_model(model_type):
|
|
40 |
manage_resources()
|
41 |
|
42 |
try:
|
43 |
-
# For CPU-only environment, don't use device_map
|
44 |
if model_type == "summarize":
|
45 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
46 |
"facebook/bart-large-cnn",
|
47 |
cache_dir="./models",
|
48 |
-
|
49 |
-
|
50 |
-
)
|
|
|
51 |
model = PeftModel.from_pretrained(
|
52 |
base_model,
|
53 |
"pendar02/results",
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
56 |
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
"facebook/bart-large-cnn",
|
58 |
cache_dir="./models"
|
59 |
)
|
60 |
else: # question_focused
|
61 |
-
base_model =
|
62 |
"GanjinZero/biobart-base",
|
63 |
cache_dir="./models",
|
64 |
-
|
65 |
-
|
66 |
-
)
|
|
|
67 |
model = PeftModel.from_pretrained(
|
68 |
base_model,
|
69 |
"pendar02/biobart-finetune",
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
tokenizer = AutoTokenizer.from_pretrained(
|
73 |
"GanjinZero/biobart-base",
|
74 |
cache_dir="./models"
|
75 |
)
|
76 |
|
77 |
-
#
|
78 |
-
model = model.cpu()
|
79 |
-
model.eval()
|
80 |
return model, tokenizer
|
81 |
except Exception as e:
|
82 |
st.error(f"Error loading model: {str(e)}")
|
|
|
40 |
manage_resources()
|
41 |
|
42 |
try:
|
|
|
43 |
if model_type == "summarize":
|
44 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
45 |
"facebook/bart-large-cnn",
|
46 |
cache_dir="./models",
|
47 |
+
device_map=None, # Explicitly set to None for CPU
|
48 |
+
torch_dtype=torch.float32
|
49 |
+
).to("cpu") # Force CPU
|
50 |
+
|
51 |
model = PeftModel.from_pretrained(
|
52 |
base_model,
|
53 |
"pendar02/results",
|
54 |
+
device_map=None, # Explicitly set to None for CPU
|
55 |
+
torch_dtype=torch.float32,
|
56 |
+
is_trainable=False # Set to inference mode
|
57 |
+
).to("cpu") # Force CPU
|
58 |
+
|
59 |
tokenizer = AutoTokenizer.from_pretrained(
|
60 |
"facebook/bart-large-cnn",
|
61 |
cache_dir="./models"
|
62 |
)
|
63 |
else: # question_focused
|
64 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
65 |
"GanjinZero/biobart-base",
|
66 |
cache_dir="./models",
|
67 |
+
device_map=None, # Explicitly set to None for CPU
|
68 |
+
torch_dtype=torch.float32
|
69 |
+
).to("cpu") # Force CPU
|
70 |
+
|
71 |
model = PeftModel.from_pretrained(
|
72 |
base_model,
|
73 |
"pendar02/biobart-finetune",
|
74 |
+
device_map=None, # Explicitly set to None for CPU
|
75 |
+
torch_dtype=torch.float32,
|
76 |
+
is_trainable=False # Set to inference mode
|
77 |
+
).to("cpu") # Force CPU
|
78 |
+
|
79 |
tokenizer = AutoTokenizer.from_pretrained(
|
80 |
"GanjinZero/biobart-base",
|
81 |
cache_dir="./models"
|
82 |
)
|
83 |
|
84 |
+
model.eval() # Set to evaluation mode
|
|
|
|
|
85 |
return model, tokenizer
|
86 |
except Exception as e:
|
87 |
st.error(f"Error loading model: {str(e)}")
|