Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -40,49 +40,42 @@ def load_model(model_type):
|
|
40 |
manage_resources()
|
41 |
|
42 |
try:
|
43 |
-
#
|
44 |
-
torch_dtype = torch.float32
|
45 |
-
if torch.cuda.is_available():
|
46 |
-
device = "cuda"
|
47 |
-
else:
|
48 |
-
device = "cpu"
|
49 |
-
torch_dtype = torch.float32 # Use float32 for CPU
|
50 |
-
|
51 |
if model_type == "summarize":
|
52 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
53 |
"facebook/bart-large-cnn",
|
54 |
cache_dir="./models",
|
55 |
-
torch_dtype=
|
56 |
low_cpu_mem_usage=True
|
57 |
)
|
58 |
model = PeftModel.from_pretrained(
|
59 |
base_model,
|
60 |
"pendar02/results",
|
61 |
-
|
62 |
-
torch_dtype=torch_dtype
|
63 |
)
|
64 |
tokenizer = AutoTokenizer.from_pretrained(
|
65 |
"facebook/bart-large-cnn",
|
66 |
cache_dir="./models"
|
67 |
)
|
68 |
else: # question_focused
|
69 |
-
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
70 |
"GanjinZero/biobart-base",
|
71 |
cache_dir="./models",
|
72 |
-
torch_dtype=
|
73 |
low_cpu_mem_usage=True
|
74 |
)
|
75 |
model = PeftModel.from_pretrained(
|
76 |
base_model,
|
77 |
"pendar02/biobart-finetune",
|
78 |
-
|
79 |
-
torch_dtype=torch_dtype
|
80 |
)
|
81 |
tokenizer = AutoTokenizer.from_pretrained(
|
82 |
"GanjinZero/biobart-base",
|
83 |
cache_dir="./models"
|
84 |
)
|
85 |
|
|
|
|
|
86 |
model.eval()
|
87 |
return model, tokenizer
|
88 |
except Exception as e:
|
|
|
40 |
manage_resources()
|
41 |
|
42 |
try:
|
43 |
+
# For CPU-only environment, don't use device_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if model_type == "summarize":
|
45 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
46 |
"facebook/bart-large-cnn",
|
47 |
cache_dir="./models",
|
48 |
+
torch_dtype=torch.float32,
|
49 |
low_cpu_mem_usage=True
|
50 |
)
|
51 |
model = PeftModel.from_pretrained(
|
52 |
base_model,
|
53 |
"pendar02/results",
|
54 |
+
torch_dtype=torch.float32
|
|
|
55 |
)
|
56 |
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
"facebook/bart-large-cnn",
|
58 |
cache_dir="./models"
|
59 |
)
|
60 |
else: # question_focused
|
61 |
+
base_model = AutoModelForSeq2SeqLation_model = AutoModelForSeq2SeqLM.from_pretrained(
|
62 |
"GanjinZero/biobart-base",
|
63 |
cache_dir="./models",
|
64 |
+
torch_dtype=torch.float32,
|
65 |
low_cpu_mem_usage=True
|
66 |
)
|
67 |
model = PeftModel.from_pretrained(
|
68 |
base_model,
|
69 |
"pendar02/biobart-finetune",
|
70 |
+
torch_dtype=torch.float32
|
|
|
71 |
)
|
72 |
tokenizer = AutoTokenizer.from_pretrained(
|
73 |
"GanjinZero/biobart-base",
|
74 |
cache_dir="./models"
|
75 |
)
|
76 |
|
77 |
+
# Ensure model is on CPU
|
78 |
+
model = model.cpu()
|
79 |
model.eval()
|
80 |
return model, tokenizer
|
81 |
except Exception as e:
|