Spaces:
Sleeping
Sleeping
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import numpy as np | |
| from nltk.corpus import wordnet | |
| from nltk.tokenize import word_tokenize | |
| import nltk | |
| import streamlit as st | |
| # Download required NLTK data | |
| try: | |
| nltk.download('wordnet', quiet=True) | |
| nltk.download('punkt', quiet=True) | |
| nltk.download('averaged_perceptron_tagger', quiet=True) | |
| except: | |
| pass | |
| class TextProcessor: | |
| def __init__(self): | |
| """Initialize the text processor with TF-IDF vectorizer""" | |
| self.vectorizer = TfidfVectorizer( | |
| stop_words='english', | |
| ngram_range=(1, 2), | |
| max_features=10000 | |
| ) | |
| def preprocess_text(self, text): | |
| """Basic text preprocessing""" | |
| # Convert to lower case | |
| text = text.lower() | |
| # Tokenize | |
| tokens = word_tokenize(text) | |
| # Get POS tags | |
| pos_tags = nltk.pos_tag(tokens) | |
| # Extract nouns and adjectives (medical terms are often these) | |
| medical_terms = [word for word, tag in pos_tags if tag.startswith(('NN', 'JJ'))] | |
| return { | |
| 'processed_text': ' '.join(tokens), | |
| 'medical_terms': medical_terms | |
| } | |
| def get_synonyms(self, term): | |
| """Get synonyms for a term using WordNet""" | |
| synonyms = [] | |
| for syn in wordnet.synsets(term): | |
| for lemma in syn.lemmas(): | |
| synonyms.append(lemma.name()) | |
| return list(set(synonyms)) | |
| def calculate_relevance_scores(self, question, abstracts): | |
| """Calculate relevance scores using multiple methods""" | |
| # Preprocess question | |
| proc_question = self.preprocess_text(question) | |
| # 1. TF-IDF Similarity | |
| tfidf_matrix = self.vectorizer.fit_transform([proc_question['processed_text']] + abstracts) | |
| tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0] | |
| # 2. Medical Term Matching | |
| term_scores = [] | |
| question_terms = set(proc_question['medical_terms']) | |
| for abstract in abstracts: | |
| abstract_terms = set(self.preprocess_text(abstract)['medical_terms']) | |
| # Calculate Jaccard similarity between terms | |
| if len(question_terms.union(abstract_terms)) > 0: | |
| score = len(question_terms.intersection(abstract_terms)) / len(question_terms.union(abstract_terms)) | |
| else: | |
| score = 0 | |
| term_scores.append(score) | |
| # 3. Synonym Matching | |
| synonym_scores = [] | |
| question_synonyms = set() | |
| for term in proc_question['medical_terms']: | |
| question_synonyms.update(self.get_synonyms(term)) | |
| for abstract in abstracts: | |
| abstract_terms = set(self.preprocess_text(abstract)['medical_terms']) | |
| abstract_synonyms = set() | |
| for term in abstract_terms: | |
| abstract_synonyms.update(self.get_synonyms(term)) | |
| # Calculate synonym overlap | |
| if len(question_synonyms.union(abstract_synonyms)) > 0: | |
| score = len(question_synonyms.intersection(abstract_synonyms)) / len(question_synonyms.union(abstract_synonyms)) | |
| else: | |
| score = 0 | |
| synonym_scores.append(score) | |
| # Combine scores with weights | |
| weights = { | |
| 'tfidf': 0.5, | |
| 'term_matching': 0.3, | |
| 'synonym_matching': 0.2 | |
| } | |
| combined_scores = [] | |
| for i in range(len(abstracts)): | |
| score = ( | |
| weights['tfidf'] * tfidf_scores[i] + | |
| weights['term_matching'] * term_scores[i] + | |
| weights['synonym_matching'] * synonym_scores[i] | |
| ) | |
| combined_scores.append(score) | |
| return np.array(combined_scores) | |
| def find_most_relevant_abstracts(self, question, abstracts, top_k=5): | |
| """Find the most relevant abstracts for a given question""" | |
| # Calculate relevance scores | |
| scores = self.calculate_relevance_scores(question, abstracts) | |
| # Get indices of top_k highest scoring abstracts | |
| top_indices = np.argsort(scores)[-top_k:][::-1] | |
| # Process question for medical terms | |
| proc_question = self.preprocess_text(question) | |
| return { | |
| 'top_indices': top_indices.tolist(), | |
| 'scores': scores[top_indices].tolist(), | |
| 'processed_question': { | |
| 'original': question, | |
| 'corrected': question, # No spell checking in this version | |
| 'medical_entities': proc_question['medical_terms'] | |
| } | |
| } |