Spaces:
Sleeping
Sleeping
Create text_processing.py
Browse files- text_processing.py +126 -0
text_processing.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
+
import numpy as np
|
| 4 |
+
from nltk.corpus import wordnet
|
| 5 |
+
from nltk.tokenize import word_tokenize
|
| 6 |
+
import nltk
|
| 7 |
+
import streamlit as st
|
| 8 |
+
|
| 9 |
+
# Download required NLTK data
|
| 10 |
+
try:
|
| 11 |
+
nltk.download('wordnet', quiet=True)
|
| 12 |
+
nltk.download('punkt', quiet=True)
|
| 13 |
+
nltk.download('averaged_perceptron_tagger', quiet=True)
|
| 14 |
+
except:
|
| 15 |
+
pass
|
| 16 |
+
|
| 17 |
+
class TextProcessor:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
"""Initialize the text processor with TF-IDF vectorizer"""
|
| 20 |
+
self.vectorizer = TfidfVectorizer(
|
| 21 |
+
stop_words='english',
|
| 22 |
+
ngram_range=(1, 2),
|
| 23 |
+
max_features=10000
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def preprocess_text(self, text):
|
| 27 |
+
"""Basic text preprocessing"""
|
| 28 |
+
# Convert to lower case
|
| 29 |
+
text = text.lower()
|
| 30 |
+
# Tokenize
|
| 31 |
+
tokens = word_tokenize(text)
|
| 32 |
+
# Get POS tags
|
| 33 |
+
pos_tags = nltk.pos_tag(tokens)
|
| 34 |
+
# Extract nouns and adjectives (medical terms are often these)
|
| 35 |
+
medical_terms = [word for word, tag in pos_tags if tag.startswith(('NN', 'JJ'))]
|
| 36 |
+
return {
|
| 37 |
+
'processed_text': ' '.join(tokens),
|
| 38 |
+
'medical_terms': medical_terms
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
def get_synonyms(self, term):
|
| 42 |
+
"""Get synonyms for a term using WordNet"""
|
| 43 |
+
synonyms = []
|
| 44 |
+
for syn in wordnet.synsets(term):
|
| 45 |
+
for lemma in syn.lemmas():
|
| 46 |
+
synonyms.append(lemma.name())
|
| 47 |
+
return list(set(synonyms))
|
| 48 |
+
|
| 49 |
+
def calculate_relevance_scores(self, question, abstracts):
|
| 50 |
+
"""Calculate relevance scores using multiple methods"""
|
| 51 |
+
# Preprocess question
|
| 52 |
+
proc_question = self.preprocess_text(question)
|
| 53 |
+
|
| 54 |
+
# 1. TF-IDF Similarity
|
| 55 |
+
tfidf_matrix = self.vectorizer.fit_transform([proc_question['processed_text']] + abstracts)
|
| 56 |
+
tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0]
|
| 57 |
+
|
| 58 |
+
# 2. Medical Term Matching
|
| 59 |
+
term_scores = []
|
| 60 |
+
question_terms = set(proc_question['medical_terms'])
|
| 61 |
+
for abstract in abstracts:
|
| 62 |
+
abstract_terms = set(self.preprocess_text(abstract)['medical_terms'])
|
| 63 |
+
# Calculate Jaccard similarity between terms
|
| 64 |
+
if len(question_terms.union(abstract_terms)) > 0:
|
| 65 |
+
score = len(question_terms.intersection(abstract_terms)) / len(question_terms.union(abstract_terms))
|
| 66 |
+
else:
|
| 67 |
+
score = 0
|
| 68 |
+
term_scores.append(score)
|
| 69 |
+
|
| 70 |
+
# 3. Synonym Matching
|
| 71 |
+
synonym_scores = []
|
| 72 |
+
question_synonyms = set()
|
| 73 |
+
for term in proc_question['medical_terms']:
|
| 74 |
+
question_synonyms.update(self.get_synonyms(term))
|
| 75 |
+
|
| 76 |
+
for abstract in abstracts:
|
| 77 |
+
abstract_terms = set(self.preprocess_text(abstract)['medical_terms'])
|
| 78 |
+
abstract_synonyms = set()
|
| 79 |
+
for term in abstract_terms:
|
| 80 |
+
abstract_synonyms.update(self.get_synonyms(term))
|
| 81 |
+
|
| 82 |
+
# Calculate synonym overlap
|
| 83 |
+
if len(question_synonyms.union(abstract_synonyms)) > 0:
|
| 84 |
+
score = len(question_synonyms.intersection(abstract_synonyms)) / len(question_synonyms.union(abstract_synonyms))
|
| 85 |
+
else:
|
| 86 |
+
score = 0
|
| 87 |
+
synonym_scores.append(score)
|
| 88 |
+
|
| 89 |
+
# Combine scores with weights
|
| 90 |
+
weights = {
|
| 91 |
+
'tfidf': 0.5,
|
| 92 |
+
'term_matching': 0.3,
|
| 93 |
+
'synonym_matching': 0.2
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
combined_scores = []
|
| 97 |
+
for i in range(len(abstracts)):
|
| 98 |
+
score = (
|
| 99 |
+
weights['tfidf'] * tfidf_scores[i] +
|
| 100 |
+
weights['term_matching'] * term_scores[i] +
|
| 101 |
+
weights['synonym_matching'] * synonym_scores[i]
|
| 102 |
+
)
|
| 103 |
+
combined_scores.append(score)
|
| 104 |
+
|
| 105 |
+
return np.array(combined_scores)
|
| 106 |
+
|
| 107 |
+
def find_most_relevant_abstracts(self, question, abstracts, top_k=5):
|
| 108 |
+
"""Find the most relevant abstracts for a given question"""
|
| 109 |
+
# Calculate relevance scores
|
| 110 |
+
scores = self.calculate_relevance_scores(question, abstracts)
|
| 111 |
+
|
| 112 |
+
# Get indices of top_k highest scoring abstracts
|
| 113 |
+
top_indices = np.argsort(scores)[-top_k:][::-1]
|
| 114 |
+
|
| 115 |
+
# Process question for medical terms
|
| 116 |
+
proc_question = self.preprocess_text(question)
|
| 117 |
+
|
| 118 |
+
return {
|
| 119 |
+
'top_indices': top_indices.tolist(),
|
| 120 |
+
'scores': scores[top_indices].tolist(),
|
| 121 |
+
'processed_question': {
|
| 122 |
+
'original': question,
|
| 123 |
+
'corrected': question, # No spell checking in this version
|
| 124 |
+
'medical_entities': proc_question['medical_terms']
|
| 125 |
+
}
|
| 126 |
+
}
|