Spaces:
Sleeping
Sleeping
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
from nltk.corpus import wordnet | |
from nltk.tokenize import word_tokenize | |
import nltk | |
import streamlit as st | |
# Download required NLTK data | |
try: | |
nltk.download('wordnet', quiet=True) | |
nltk.download('punkt', quiet=True) | |
nltk.download('averaged_perceptron_tagger', quiet=True) | |
except: | |
pass | |
class TextProcessor: | |
def __init__(self): | |
"""Initialize the text processor with TF-IDF vectorizer""" | |
self.vectorizer = TfidfVectorizer( | |
stop_words='english', | |
ngram_range=(1, 2), | |
max_features=10000 | |
) | |
def preprocess_text(self, text): | |
"""Basic text preprocessing""" | |
# Convert to lower case | |
text = text.lower() | |
# Tokenize | |
tokens = word_tokenize(text) | |
# Get POS tags | |
pos_tags = nltk.pos_tag(tokens) | |
# Extract nouns and adjectives (medical terms are often these) | |
medical_terms = [word for word, tag in pos_tags if tag.startswith(('NN', 'JJ'))] | |
return { | |
'processed_text': ' '.join(tokens), | |
'medical_terms': medical_terms | |
} | |
def get_synonyms(self, term): | |
"""Get synonyms for a term using WordNet""" | |
synonyms = [] | |
for syn in wordnet.synsets(term): | |
for lemma in syn.lemmas(): | |
synonyms.append(lemma.name()) | |
return list(set(synonyms)) | |
def calculate_relevance_scores(self, question, abstracts): | |
"""Calculate relevance scores using multiple methods""" | |
# Preprocess question | |
proc_question = self.preprocess_text(question) | |
# 1. TF-IDF Similarity | |
tfidf_matrix = self.vectorizer.fit_transform([proc_question['processed_text']] + abstracts) | |
tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0] | |
# 2. Medical Term Matching | |
term_scores = [] | |
question_terms = set(proc_question['medical_terms']) | |
for abstract in abstracts: | |
abstract_terms = set(self.preprocess_text(abstract)['medical_terms']) | |
# Calculate Jaccard similarity between terms | |
if len(question_terms.union(abstract_terms)) > 0: | |
score = len(question_terms.intersection(abstract_terms)) / len(question_terms.union(abstract_terms)) | |
else: | |
score = 0 | |
term_scores.append(score) | |
# 3. Synonym Matching | |
synonym_scores = [] | |
question_synonyms = set() | |
for term in proc_question['medical_terms']: | |
question_synonyms.update(self.get_synonyms(term)) | |
for abstract in abstracts: | |
abstract_terms = set(self.preprocess_text(abstract)['medical_terms']) | |
abstract_synonyms = set() | |
for term in abstract_terms: | |
abstract_synonyms.update(self.get_synonyms(term)) | |
# Calculate synonym overlap | |
if len(question_synonyms.union(abstract_synonyms)) > 0: | |
score = len(question_synonyms.intersection(abstract_synonyms)) / len(question_synonyms.union(abstract_synonyms)) | |
else: | |
score = 0 | |
synonym_scores.append(score) | |
# Combine scores with weights | |
weights = { | |
'tfidf': 0.5, | |
'term_matching': 0.3, | |
'synonym_matching': 0.2 | |
} | |
combined_scores = [] | |
for i in range(len(abstracts)): | |
score = ( | |
weights['tfidf'] * tfidf_scores[i] + | |
weights['term_matching'] * term_scores[i] + | |
weights['synonym_matching'] * synonym_scores[i] | |
) | |
combined_scores.append(score) | |
return np.array(combined_scores) | |
def find_most_relevant_abstracts(self, question, abstracts, top_k=5): | |
"""Find the most relevant abstracts for a given question""" | |
# Calculate relevance scores | |
scores = self.calculate_relevance_scores(question, abstracts) | |
# Get indices of top_k highest scoring abstracts | |
top_indices = np.argsort(scores)[-top_k:][::-1] | |
# Process question for medical terms | |
proc_question = self.preprocess_text(question) | |
return { | |
'top_indices': top_indices.tolist(), | |
'scores': scores[top_indices].tolist(), | |
'processed_question': { | |
'original': question, | |
'corrected': question, # No spell checking in this version | |
'medical_entities': proc_question['medical_terms'] | |
} | |
} |