Spaces:
Running
on
Zero
Running
on
Zero
from PIL.Image import Image as PILImage | |
from torch import Tensor | |
import PIL.Image | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from einops import rearrange | |
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import * | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import * | |
# Copied from https://github.com/camenduru/GRM/blob/master/third_party/generative_models/instant3d.py | |
def build_gaussians(H: int, W: int, std: float, bg: float = 0.) -> Tensor: | |
assert H == W # TODO: support non-square latents | |
x_vals = torch.arange(W) | |
y_vals = torch.arange(H) | |
x_vals, y_vals = torch.meshgrid(x_vals, y_vals, indexing="ij") | |
x_vals = x_vals.unsqueeze(0).unsqueeze(0) | |
y_vals = y_vals.unsqueeze(0).unsqueeze(0) | |
center_x, center_y = W//2., H//2. | |
gaussian = torch.exp(-((x_vals - center_x) ** 2 + (y_vals - center_y) ** 2) / (2 * (std * H) ** 2)) # cf. Instant3D A.5 | |
gaussian = gaussian / gaussian.max() | |
gaussian = (gaussian + bg).clamp(0., 1.) # gray background for `bg` > 0. | |
gaussian = gaussian.repeat(1, 3, 1, 1) | |
gaussian = 1. - gaussian # (1, 3, H, W) in [0, 1] | |
gaussian = torch.cat([gaussian, gaussian], dim=-1) | |
gaussian = torch.cat([gaussian, gaussian], dim=-2) # (1, 3, 2H, 2W) | |
gaussians = F.interpolate(gaussian, (H, W), mode="bilinear", align_corners=False) | |
gaussians = gaussians * 2. - 1. # (1, 3, H, W) in [-1, 1] | |
return gaussians | |
# Copied from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion | |
def _append_dims(x, target_dims): | |
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | |
dims_to_append = target_dims - x.ndim | |
if dims_to_append < 0: | |
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") | |
return x[(...,) + (None,) * dims_to_append] | |
class StableMVDiffusion3Pipeline(StableDiffusion3Pipeline): | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
def get_timesteps_img2img(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
if hasattr(self.scheduler, "set_begin_index"): | |
self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
return timesteps, num_inference_steps - t_start | |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.prepare_latents | |
def prepare_latents_img2img(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == self.vae.config.latent_channels: | |
init_latents = image | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
init_latents = [ | |
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
# expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
init_latents = self.scheduler.scale_noise(init_latents, timestep, noise) | |
latents = init_latents.to(device=device, dtype=dtype) | |
return latents | |
def prepare_image_latents(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.vae.parameters()).dtype | |
assert isinstance(image, Tensor) | |
assert image.ndim == 5 and image.shape[2] == 3 | |
V_cond = image.shape[1] | |
image = rearrange(image, "b v c h w -> (b v) c h w") | |
# VAE latent | |
image = image.to(device).to(dtype) # not resize like CLIP preprocessing | |
image = image * 2. - 1. | |
image_latents = self.vae.encode(image).latent_dist.mode() * self.vae.config.scaling_factor | |
image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond) | |
# duplicate image latents for each generation per prompt, using mps friendly method | |
image_latents = image_latents.unsqueeze(1) | |
bs_latent, _, v, c, h, w = image_latents.shape | |
image_latents = image_latents.repeat(1, num_images_per_prompt, 1, 1, 1, 1) | |
image_latents = image_latents.view(bs_latent * num_images_per_prompt, v, c, h, w) | |
if do_classifier_free_guidance: | |
negative_latents = torch.zeros_like(image_latents) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_latents = torch.cat([negative_latents, image_latents]) | |
return image_latents | |
def prepare_plucker(self, plucker, num_images_per_prompt, do_classifier_free_guidance): | |
plucker = plucker.to(dtype=self.transformer.dtype, device=self.transformer.device) | |
# duplicate plucker embeddings for each generation per prompt, using mps friendly method | |
plucker = plucker.unsqueeze(1) | |
bs, _, c, h, w = plucker.shape | |
plucker = plucker.repeat(1, num_images_per_prompt, 1, 1, 1) | |
plucker = plucker.view(bs * num_images_per_prompt, c, h, w) | |
if do_classifier_free_guidance: | |
plucker = torch.cat([plucker]*2, dim=0) | |
return plucker | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
# Refine for triangle cfg scaling | |
def do_classifier_free_guidance(self): | |
if isinstance(self.guidance_scale, (int, float)): | |
return self.guidance_scale > 1 | |
return self.guidance_scale.max() > 1 | |
def __call__( | |
self, | |
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor] = None, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
prompt_3: Optional[Union[str, List[str]]] = None, | |
num_views: int = 4, | |
plucker: Optional[torch.FloatTensor] = None, | |
triangle_cfg_scaling: bool = False, | |
min_guidance_scale: float = 1.0, | |
max_guidance_scale: float = 3.0, | |
init_std: Optional[float] = 0., | |
init_noise_strength: Optional[float] = 1., | |
init_bg: Optional[float] = 0., | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
sigmas: Optional[List[float]] = None, | |
guidance_scale: float = 7.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
negative_prompt_3: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 256, | |
skip_guidance_layers: List[int] = None, | |
skip_layer_guidance_scale: float = 2.8, | |
skip_layer_guidance_stop: float = 0.2, | |
skip_layer_guidance_start: float = 0.01, | |
mu: Optional[float] = None, | |
): | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
prompt_3, | |
height, | |
width, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
negative_prompt_3=negative_prompt_3, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale if not triangle_cfg_scaling else max_guidance_scale | |
self._skip_layer_guidance_scale = skip_layer_guidance_scale | |
self._clip_skip = clip_skip | |
self._joint_attention_kwargs = joint_attention_kwargs if joint_attention_kwargs is not None else {} | |
self._interrupt = False | |
V_cond = 0 | |
if image is not None: | |
assert image.ndim == 5 # (B, V_cond, 3, H, W) | |
V_cond = image.shape[1] | |
self.joint_attention_kwargs.update(num_views=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_3=prompt_3, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
negative_prompt_3=negative_prompt_3, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
device=device, | |
clip_skip=self.clip_skip, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
if self.do_classifier_free_guidance: | |
if skip_guidance_layers is not None: | |
original_prompt_embeds = prompt_embeds | |
original_pooled_prompt_embeds = pooled_prompt_embeds | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) | |
# 3.1 Prepare input image latents | |
if self.transformer.config.view_concat_condition: | |
if image is not None: | |
image_latents = self.prepare_image_latents(image, device, num_images_per_prompt, self.do_classifier_free_guidance) | |
else: | |
image_latents = torch.zeros( | |
( | |
batch_size * num_images_per_prompt, | |
self.transformer.config.out_channels, # `num_channels_latents`; self.transformer.config.in_channels | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
), | |
dtype=prompt_embeds.dtype, | |
device=device, | |
) | |
if V_cond > 0: | |
image_latents = image_latents.unsqueeze(1).repeat(1, V_cond, 1, 1, 1) | |
if self.do_classifier_free_guidance: | |
image_latents = torch.cat([image_latents] * 2, dim=0) | |
# 3.2 Prepare Plucker embeddings | |
if plucker is not None: | |
assert plucker.shape[0] == batch_size * (num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) | |
plucker = self.prepare_plucker(plucker, num_images_per_prompt, self.do_classifier_free_guidance) | |
# 4. Prepare latent variables | |
num_channels_latents = self.transformer.config.out_channels # self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt * num_views, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 5. Prepare timesteps | |
scheduler_kwargs = {} | |
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None: | |
_, _, height, width = latents.shape | |
image_seq_len = (height // self.transformer.config.patch_size) * ( | |
width // self.transformer.config.patch_size | |
) | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
scheduler_kwargs["mu"] = mu | |
elif mu is not None: | |
scheduler_kwargs["mu"] = mu | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
sigmas=sigmas, | |
**scheduler_kwargs, | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# 5.1 Gaussian blobs initialization; cf. Instant3D | |
if init_std > 0. and init_noise_strength < 1.: | |
row = int(num_views**0.5) | |
col = num_views - row | |
init_image = build_gaussians(row * height, col * width, init_std, init_bg).to(device=device, dtype=latents.dtype) | |
init_image = rearrange(init_image, "b d (r h) (c w) -> (b r c) d h w", r=row, c=col) | |
timesteps, num_inference_steps = self.get_timesteps_img2img(num_inference_steps, init_noise_strength, device) | |
self._num_timesteps = len(timesteps) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
latents = self.prepare_latents_img2img( | |
init_image, | |
latent_timestep, | |
batch_size, | |
num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
) | |
# 5.2 Prepare guidance scale | |
if triangle_cfg_scaling: | |
# Triangle CFG scaling; the first view is input condition | |
guidance_scale = torch.cat([ | |
torch.linspace(min_guidance_scale, max_guidance_scale, num_views//2 + 1).unsqueeze(0), | |
torch.linspace(max_guidance_scale, min_guidance_scale, num_views - (num_views//2 + 1) + 2)[1:-1].unsqueeze(0) | |
], dim=-1) | |
guidance_scale = guidance_scale.to(device, latents.dtype) | |
guidance_scale = guidance_scale.repeat(batch_size * num_images_per_prompt, 1) | |
guidance_scale = _append_dims(guidance_scale, latents.unsqueeze(1).ndim) # (B, V, 1, 1, 1) | |
guidance_scale = rearrange(guidance_scale, "b v c h w -> (b v) c h w") | |
self._guidance_scale = guidance_scale | |
# 6. Prepare image embeddings | |
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None: | |
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
if self.joint_attention_kwargs is None: | |
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds} | |
else: | |
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds) | |
# 7. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0] // num_views) | |
# Concatenate input latents with others | |
latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=num_views) | |
if self.transformer.config.view_concat_condition: | |
latent_model_input = torch.cat([image_latents, latent_model_input], dim=1) # (B, V_in+V_cond, 4, H', W') | |
if self.transformer.config.input_concat_plucker: | |
plucker = F.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False) | |
plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) | |
latent_model_input = torch.cat([latent_model_input, plucker], dim=2) # (B, V_in(+V_cond), 4+6, H', W') | |
plucker = rearrange(plucker, "b v c h w -> (b v) c h w") | |
if self.transformer.config.input_concat_binary_mask: | |
if self.transformer.config.view_concat_condition: | |
latent_model_input = torch.cat([ | |
torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2), | |
torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2), | |
], dim=1) # (B, V_in+V_cond, 4+6+1, H', W') | |
else: | |
latent_model_input = torch.cat([ | |
torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2), | |
], dim=1) # (B, V_in, 4+6+1, H', W') | |
latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w") | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
pooled_projections=pooled_prompt_embeds, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# Only keep the noise prediction for the latents | |
if self.transformer.config.view_concat_condition: | |
noise_pred = rearrange(noise_pred, "(b v) c h w -> b v c h w", v=num_views+V_cond) | |
noise_pred = rearrange(noise_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w") | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
should_skip_layers = ( | |
True | |
if i > num_inference_steps * skip_layer_guidance_start | |
and i < num_inference_steps * skip_layer_guidance_stop | |
else False | |
) | |
if skip_guidance_layers is not None and should_skip_layers: | |
timestep = t.expand(latents.shape[0]) | |
latent_model_input = latents | |
noise_pred_skip_layers = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=original_prompt_embeds, | |
pooled_projections=original_pooled_prompt_embeds, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
skip_layers=skip_guidance_layers, | |
)[0] | |
noise_pred = ( | |
noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
negative_pooled_prompt_embeds = callback_outputs.pop( | |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusion3PipelineOutput(images=image) | |