from PIL.Image import Image as PILImage from torch import Tensor import PIL.Image import torch.nn.functional as F import torchvision.transforms.functional as TF from einops import rearrange from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import * from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import * # Copied from https://github.com/camenduru/GRM/blob/master/third_party/generative_models/instant3d.py def build_gaussians(H: int, W: int, std: float, bg: float = 0.) -> Tensor: assert H == W # TODO: support non-square latents x_vals = torch.arange(W) y_vals = torch.arange(H) x_vals, y_vals = torch.meshgrid(x_vals, y_vals, indexing="ij") x_vals = x_vals.unsqueeze(0).unsqueeze(0) y_vals = y_vals.unsqueeze(0).unsqueeze(0) center_x, center_y = W//2., H//2. gaussian = torch.exp(-((x_vals - center_x) ** 2 + (y_vals - center_y) ** 2) / (2 * (std * H) ** 2)) # cf. Instant3D A.5 gaussian = gaussian / gaussian.max() gaussian = (gaussian + bg).clamp(0., 1.) # gray background for `bg` > 0. gaussian = gaussian.repeat(1, 3, 1, 1) gaussian = 1. - gaussian # (1, 3, H, W) in [0, 1] gaussian = torch.cat([gaussian, gaussian], dim=-1) gaussian = torch.cat([gaussian, gaussian], dim=-2) # (1, 3, 2H, 2W) gaussians = F.interpolate(gaussian, (H, W), mode="bilinear", align_corners=False) gaussians = gaussians * 2. - 1. # (1, 3, H, W) in [-1, 1] return gaussians # Copied from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion def _append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") return x[(...,) + (None,) * dims_to_append] class StableMVDiffusion3Pipeline(StableDiffusion3Pipeline): # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps_img2img(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.prepare_latents def prepare_latents_img2img(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == self.vae.config.latent_channels: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = retrieve_latents(self.vae.encode(image), generator=generator) init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.scale_noise(init_latents, timestep, noise) latents = init_latents.to(device=device, dtype=dtype) return latents def prepare_image_latents(self, image, device, num_images_per_prompt, do_classifier_free_guidance): dtype = next(self.vae.parameters()).dtype assert isinstance(image, Tensor) assert image.ndim == 5 and image.shape[2] == 3 V_cond = image.shape[1] image = rearrange(image, "b v c h w -> (b v) c h w") # VAE latent image = image.to(device).to(dtype) # not resize like CLIP preprocessing image = image * 2. - 1. image_latents = self.vae.encode(image).latent_dist.mode() * self.vae.config.scaling_factor image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond) # duplicate image latents for each generation per prompt, using mps friendly method image_latents = image_latents.unsqueeze(1) bs_latent, _, v, c, h, w = image_latents.shape image_latents = image_latents.repeat(1, num_images_per_prompt, 1, 1, 1, 1) image_latents = image_latents.view(bs_latent * num_images_per_prompt, v, c, h, w) if do_classifier_free_guidance: negative_latents = torch.zeros_like(image_latents) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_latents = torch.cat([negative_latents, image_latents]) return image_latents def prepare_plucker(self, plucker, num_images_per_prompt, do_classifier_free_guidance): plucker = plucker.to(dtype=self.transformer.dtype, device=self.transformer.device) # duplicate plucker embeddings for each generation per prompt, using mps friendly method plucker = plucker.unsqueeze(1) bs, _, c, h, w = plucker.shape plucker = plucker.repeat(1, num_images_per_prompt, 1, 1, 1) plucker = plucker.view(bs * num_images_per_prompt, c, h, w) if do_classifier_free_guidance: plucker = torch.cat([plucker]*2, dim=0) return plucker # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. # Refine for triangle cfg scaling @property def do_classifier_free_guidance(self): if isinstance(self.guidance_scale, (int, float)): return self.guidance_scale > 1 return self.guidance_scale.max() > 1 @torch.no_grad() def __call__( self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor] = None, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, prompt_3: Optional[Union[str, List[str]]] = None, num_views: int = 4, plucker: Optional[torch.FloatTensor] = None, triangle_cfg_scaling: bool = False, min_guidance_scale: float = 1.0, max_guidance_scale: float = 3.0, init_std: Optional[float] = 0., init_noise_strength: Optional[float] = 1., init_bg: Optional[float] = 0., height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, sigmas: Optional[List[float]] = None, guidance_scale: float = 7.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 256, skip_guidance_layers: List[int] = None, skip_layer_guidance_scale: float = 2.8, skip_layer_guidance_stop: float = 0.2, skip_layer_guidance_start: float = 0.01, mu: Optional[float] = None, ): height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale if not triangle_cfg_scaling else max_guidance_scale self._skip_layer_guidance_scale = skip_layer_guidance_scale self._clip_skip = clip_skip self._joint_attention_kwargs = joint_attention_kwargs if joint_attention_kwargs is not None else {} self._interrupt = False V_cond = 0 if image is not None: assert image.ndim == 5 # (B, V_cond, 3, H, W) V_cond = image.shape[1] self.joint_attention_kwargs.update(num_views=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) if self.do_classifier_free_guidance: if skip_guidance_layers is not None: original_prompt_embeds = prompt_embeds original_pooled_prompt_embeds = pooled_prompt_embeds prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) # 3.1 Prepare input image latents if self.transformer.config.view_concat_condition: if image is not None: image_latents = self.prepare_image_latents(image, device, num_images_per_prompt, self.do_classifier_free_guidance) else: image_latents = torch.zeros( ( batch_size * num_images_per_prompt, self.transformer.config.out_channels, # `num_channels_latents`; self.transformer.config.in_channels int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ), dtype=prompt_embeds.dtype, device=device, ) if V_cond > 0: image_latents = image_latents.unsqueeze(1).repeat(1, V_cond, 1, 1, 1) if self.do_classifier_free_guidance: image_latents = torch.cat([image_latents] * 2, dim=0) # 3.2 Prepare Plucker embeddings if plucker is not None: assert plucker.shape[0] == batch_size * (num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) plucker = self.prepare_plucker(plucker, num_images_per_prompt, self.do_classifier_free_guidance) # 4. Prepare latent variables num_channels_latents = self.transformer.config.out_channels # self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt * num_views, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5. Prepare timesteps scheduler_kwargs = {} if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None: _, _, height, width = latents.shape image_seq_len = (height // self.transformer.config.patch_size) * ( width // self.transformer.config.patch_size ) mu = calculate_shift( image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift, ) scheduler_kwargs["mu"] = mu elif mu is not None: scheduler_kwargs["mu"] = mu timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, sigmas=sigmas, **scheduler_kwargs, ) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) # 5.1 Gaussian blobs initialization; cf. Instant3D if init_std > 0. and init_noise_strength < 1.: row = int(num_views**0.5) col = num_views - row init_image = build_gaussians(row * height, col * width, init_std, init_bg).to(device=device, dtype=latents.dtype) init_image = rearrange(init_image, "b d (r h) (c w) -> (b r c) d h w", r=row, c=col) timesteps, num_inference_steps = self.get_timesteps_img2img(num_inference_steps, init_noise_strength, device) self._num_timesteps = len(timesteps) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) latents = self.prepare_latents_img2img( init_image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, ) # 5.2 Prepare guidance scale if triangle_cfg_scaling: # Triangle CFG scaling; the first view is input condition guidance_scale = torch.cat([ torch.linspace(min_guidance_scale, max_guidance_scale, num_views//2 + 1).unsqueeze(0), torch.linspace(max_guidance_scale, min_guidance_scale, num_views - (num_views//2 + 1) + 2)[1:-1].unsqueeze(0) ], dim=-1) guidance_scale = guidance_scale.to(device, latents.dtype) guidance_scale = guidance_scale.repeat(batch_size * num_images_per_prompt, 1) guidance_scale = _append_dims(guidance_scale, latents.unsqueeze(1).ndim) # (B, V, 1, 1, 1) guidance_scale = rearrange(guidance_scale, "b v c h w -> (b v) c h w") self._guidance_scale = guidance_scale # 6. Prepare image embeddings if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None: ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) if self.joint_attention_kwargs is None: self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds} else: self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds) # 7. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0] // num_views) # Concatenate input latents with others latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=num_views) if self.transformer.config.view_concat_condition: latent_model_input = torch.cat([image_latents, latent_model_input], dim=1) # (B, V_in+V_cond, 4, H', W') if self.transformer.config.input_concat_plucker: plucker = F.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False) plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) latent_model_input = torch.cat([latent_model_input, plucker], dim=2) # (B, V_in(+V_cond), 4+6, H', W') plucker = rearrange(plucker, "b v c h w -> (b v) c h w") if self.transformer.config.input_concat_binary_mask: if self.transformer.config.view_concat_condition: latent_model_input = torch.cat([ torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2), torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2), ], dim=1) # (B, V_in+V_cond, 4+6+1, H', W') else: latent_model_input = torch.cat([ torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2), ], dim=1) # (B, V_in, 4+6+1, H', W') latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w") noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] # Only keep the noise prediction for the latents if self.transformer.config.view_concat_condition: noise_pred = rearrange(noise_pred, "(b v) c h w -> b v c h w", v=num_views+V_cond) noise_pred = rearrange(noise_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w") # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) should_skip_layers = ( True if i > num_inference_steps * skip_layer_guidance_start and i < num_inference_steps * skip_layer_guidance_stop else False ) if skip_guidance_layers is not None and should_skip_layers: timestep = t.expand(latents.shape[0]) latent_model_input = latents noise_pred_skip_layers = self.transformer( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=original_prompt_embeds, pooled_projections=original_pooled_prompt_embeds, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, skip_layers=skip_guidance_layers, )[0] noise_pred = ( noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale ) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return StableDiffusion3PipelineOutput(images=image)