Safe-Space / server /core /ml_manager.py
parthraninga's picture
Upload 46 files
4a50742 verified
raw
history blame
23.5 kB
import os
import joblib
import onnxruntime as ort
import numpy as np
from pathlib import Path
from typing import Dict, Any, Optional, List
import logging
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import warnings
# Suppress sklearn warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", message=".*sklearn.*")
logger = logging.getLogger(__name__)
class MLManager:
"""Centralized ML model manager for SafeSpace threat detection"""
def __init__(self, models_dir: str = "models"):
self.models_dir = Path(models_dir)
self.models_loaded = False
# Model instances
self.threat_model = None
self.sentiment_model = None
self.onnx_session = None
self.threat_vectorizer = None
self.sentiment_vectorizer = None
# Model paths
self.model_paths = {
"threat": self.models_dir / "Threat.pkl",
"sentiment": self.models_dir / "sentiment.pkl",
"context": self.models_dir / "contextClassifier.onnx"
}
# Initialize models
self._load_models()
def _load_models(self) -> bool:
"""Load all ML models"""
try:
logger.info("Loading ML models...")
# Load threat detection model
if self.model_paths["threat"].exists():
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
self.threat_model = joblib.load(self.model_paths["threat"])
logger.info("✅ Threat model loaded successfully")
except Exception as e:
logger.warning(f"⚠️ Failed to load threat model: {e}")
self.threat_model = None
else:
logger.error(f"❌ Threat model not found: {self.model_paths['threat']}")
# Load sentiment analysis model
if self.model_paths["sentiment"].exists():
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
self.sentiment_model = joblib.load(self.model_paths["sentiment"])
logger.info("✅ Sentiment model loaded successfully")
except Exception as e:
logger.warning(f"⚠️ Failed to load sentiment model: {e}")
self.sentiment_model = None
else:
logger.error(f"❌ Sentiment model not found: {self.model_paths['sentiment']}")
# Load ONNX context classifier
if self.model_paths["context"].exists():
try:
self.onnx_session = ort.InferenceSession(
str(self.model_paths["context"]),
providers=['CPUExecutionProvider'] # Specify CPU provider
)
logger.info("✅ ONNX context classifier loaded successfully")
except Exception as e:
logger.warning(f"⚠️ Failed to load ONNX model: {e}")
self.onnx_session = None
else:
logger.error(f"❌ ONNX model not found: {self.model_paths['context']}")
# Check if models are loaded
models_available = [
self.threat_model is not None,
self.sentiment_model is not None,
self.onnx_session is not None
]
self.models_loaded = any(models_available)
if self.models_loaded:
logger.info(f"✅ ML Manager initialized with {sum(models_available)}/3 models")
else:
logger.warning("⚠️ No models loaded, falling back to rule-based detection")
return self.models_loaded
except Exception as e:
logger.error(f"❌ Error loading models: {e}")
self.models_loaded = False
return False
def _preprocess_text(self, text: str) -> str:
"""Preprocess text for model input"""
if not text:
return ""
# Convert to lowercase
text = text.lower()
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text).strip()
# Remove special characters but keep basic punctuation
text = re.sub(r'[^\w\s\.,!?-]', '', text)
return text
def predict_threat(self, text: str) -> Dict[str, Any]:
"""Main threat prediction using ensemble of models"""
try:
processed_text = self._preprocess_text(text)
if not processed_text:
return self._create_empty_prediction()
predictions = {}
confidence_scores = []
models_used = []
# 1. Threat Detection Model
threat_confidence = 0.0
threat_prediction = 0
if self.threat_model is not None:
try:
# Ensure we have clean text input for threat detection
threat_input = processed_text if isinstance(processed_text, str) else str(processed_text)
# Handle different model prediction formats
raw_prediction = self.threat_model.predict([threat_input])
# Extract prediction value - handle both single values and arrays
if isinstance(raw_prediction, (list, np.ndarray)):
if len(raw_prediction) > 0:
pred_val = raw_prediction[0]
if isinstance(pred_val, (list, np.ndarray)) and len(pred_val) > 0:
threat_prediction = int(pred_val[0])
elif isinstance(pred_val, (int, float, np.integer, np.floating)):
threat_prediction = int(pred_val)
else:
logger.warning(f"Unexpected threat prediction format: {type(pred_val)} - {pred_val}")
threat_prediction = 0
else:
threat_prediction = 0
elif isinstance(raw_prediction, (int, float, np.integer, np.floating)):
threat_prediction = int(raw_prediction)
else:
logger.warning(f"Unexpected threat prediction type: {type(raw_prediction)} - {raw_prediction}")
threat_prediction = 0
# Get confidence if available
if hasattr(self.threat_model, 'predict_proba'):
threat_proba = self.threat_model.predict_proba([threat_input])[0]
threat_confidence = float(max(threat_proba))
else:
threat_confidence = 0.8 if threat_prediction == 1 else 0.2
predictions["threat"] = {
"prediction": threat_prediction,
"confidence": threat_confidence
}
confidence_scores.append(threat_confidence * 0.5) # 50% weight
models_used.append("threat_classifier")
except Exception as e:
logger.error(f"Threat model prediction failed: {e}")
# Provide fallback threat detection
threat_keywords = ['attack', 'violence', 'emergency', 'fire', 'accident', 'threat', 'danger', 'killed', 'death']
fallback_threat = 1 if any(word in processed_text for word in threat_keywords) else 0
fallback_confidence = 0.8 if fallback_threat == 1 else 0.2
predictions["threat"] = {
"prediction": fallback_threat,
"confidence": fallback_confidence
}
confidence_scores.append(fallback_confidence * 0.5)
models_used.append("fallback_threat")
# 2. Sentiment Analysis Model
sentiment_confidence = 0.0
sentiment_prediction = 0
if self.sentiment_model is not None:
try:
# Ensure we have clean text input for sentiment analysis
sentiment_input = processed_text if isinstance(processed_text, str) else str(processed_text)
# Handle different model prediction formats
raw_prediction = self.sentiment_model.predict([sentiment_input])
# Extract prediction value - handle both single values and arrays
if isinstance(raw_prediction, (list, np.ndarray)):
if len(raw_prediction) > 0:
pred_val = raw_prediction[0]
if isinstance(pred_val, (list, np.ndarray)) and len(pred_val) > 0:
# Handle numeric prediction values safely
try:
sentiment_prediction = int(pred_val[0])
except (ValueError, TypeError):
# Handle non-numeric predictions gracefully
logger.debug(f"Non-numeric prediction value: {pred_val[0]}, using default")
sentiment_prediction = 0
elif isinstance(pred_val, (int, float, np.integer, np.floating)):
# Handle numeric prediction values safely
try:
sentiment_prediction = int(pred_val)
except (ValueError, TypeError):
# Handle non-numeric predictions gracefully
logger.debug(f"Non-numeric prediction value: {pred_val}, using default")
sentiment_prediction = 0
elif isinstance(pred_val, dict):
# Handle dictionary prediction format (common with transformers models)
label = pred_val.get("label", "").lower()
score = pred_val.get("score", 0.0)
# Map emotions to binary sentiment (0=negative, 1=positive)
negative_emotions = ["fear", "anger", "sadness", "disgust"]
positive_emotions = ["joy", "surprise", "love", "happiness"]
if label in negative_emotions:
sentiment_prediction = 0 # Negative
elif label in positive_emotions:
sentiment_prediction = 1 # Positive
else:
# Default handling for unknown labels
sentiment_prediction = 0 if score < 0.5 else 1
# Use the score from the prediction
sentiment_confidence = float(score)
logger.debug(f"Processed emotion '{label}' -> sentiment: {sentiment_prediction} (confidence: {sentiment_confidence})")
else:
logger.warning(f"Unexpected sentiment prediction format: {type(pred_val)} - {pred_val}")
sentiment_prediction = 0
else:
sentiment_prediction = 0
elif isinstance(raw_prediction, (int, float, np.integer, np.floating)):
# Handle single numeric prediction values safely
try:
sentiment_prediction = int(raw_prediction)
except (ValueError, TypeError):
# Handle non-numeric predictions gracefully
logger.debug(f"Non-numeric raw prediction: {raw_prediction}, using default")
sentiment_prediction = 0
else:
logger.warning(f"Unexpected sentiment prediction type: {type(raw_prediction)} - {raw_prediction}")
sentiment_prediction = 0
# Get confidence if available
if hasattr(self.sentiment_model, 'predict_proba'):
sentiment_proba = self.sentiment_model.predict_proba([sentiment_input])[0]
sentiment_confidence = float(max(sentiment_proba))
else:
sentiment_confidence = 0.7 if sentiment_prediction == 0 else 0.3 # Negative sentiment = higher threat
# Determine sentiment label
sentiment_label = "negative" if sentiment_prediction == 0 else "positive"
# If we got a label from the dictionary prediction, use that instead
if 'label' in locals():
sentiment_label = label
predictions["sentiment"] = {
"prediction": sentiment_prediction,
"confidence": sentiment_confidence,
"label": sentiment_label
}
# Negative sentiment contributes to threat score
sentiment_threat_score = (1 - sentiment_prediction) * sentiment_confidence * 0.2 # 20% weight
confidence_scores.append(sentiment_threat_score)
models_used.append("sentiment_classifier")
except Exception as e:
logger.error(f"Sentiment model prediction failed: {e}")
# Provide fallback sentiment analysis
negative_words = ['attack', 'violence', 'death', 'killed', 'emergency', 'fire', 'accident', 'threat']
fallback_sentiment = 0 if any(word in processed_text for word in negative_words) else 1
predictions["sentiment"] = {
"prediction": fallback_sentiment,
"confidence": 0.6,
"label": "negative" if fallback_sentiment == 0 else "positive"
}
sentiment_threat_score = (1 - fallback_sentiment) * 0.6 * 0.2
confidence_scores.append(sentiment_threat_score)
models_used.append("fallback_sentiment")
# 3. ONNX Context Classifier
onnx_confidence = 0.0
onnx_prediction = 0
if self.onnx_session is not None:
try:
# Check what inputs the ONNX model expects
input_names = [inp.name for inp in self.onnx_session.get_inputs()]
if 'input_ids' in input_names and 'attention_mask' in input_names:
# This is likely a transformer model (BERT-like)
# Create simple tokenized input (basic approach)
tokens = processed_text.split()[:50] # Limit to 50 tokens
# Simple word-to-ID mapping (this is a fallback approach)
input_ids = [hash(word) % 1000 + 1 for word in tokens] # Simple hash-based IDs
# Pad or truncate to fixed length
max_length = 128
if len(input_ids) < max_length:
input_ids.extend([0] * (max_length - len(input_ids)))
else:
input_ids = input_ids[:max_length]
attention_mask = [1 if i != 0 else 0 for i in input_ids]
# Convert to numpy arrays with correct shape
input_ids_array = np.array([input_ids], dtype=np.int64)
attention_mask_array = np.array([attention_mask], dtype=np.int64)
inputs = {
'input_ids': input_ids_array,
'attention_mask': attention_mask_array
}
onnx_output = self.onnx_session.run(None, inputs)
# Extract prediction from output
if len(onnx_output) > 0 and len(onnx_output[0]) > 0:
# Handle different output formats
output = onnx_output[0][0]
if isinstance(output, (list, np.ndarray)) and len(output) > 1:
# Probability output
probs = output
onnx_prediction = int(np.argmax(probs))
onnx_confidence = float(max(probs))
else:
# Single value output
onnx_prediction = int(output > 0.5)
onnx_confidence = float(abs(output))
else:
# Use the original simple feature approach
input_name = input_names[0] if input_names else 'input'
text_features = self._text_to_features(processed_text)
onnx_output = self.onnx_session.run(None, {input_name: text_features})
onnx_prediction = int(onnx_output[0][0]) if len(onnx_output[0]) > 0 else 0
onnx_confidence = float(onnx_output[1][0][1]) if len(onnx_output) > 1 else 0.5
predictions["onnx"] = {
"prediction": onnx_prediction,
"confidence": onnx_confidence
}
confidence_scores.append(onnx_confidence * 0.3) # 30% weight
models_used.append("context_classifier")
except Exception as e:
logger.error(f"ONNX model prediction failed: {e}")
# Provide fallback based on keyword analysis
threat_keywords = ['emergency', 'attack', 'violence', 'fire', 'accident', 'threat', 'danger']
fallback_confidence = len([w for w in threat_keywords if w in processed_text]) / len(threat_keywords)
fallback_prediction = 1 if fallback_confidence > 0.3 else 0
predictions["onnx"] = {
"prediction": fallback_prediction,
"confidence": fallback_confidence
}
confidence_scores.append(fallback_confidence * 0.3)
models_used.append("fallback_context")
# Calculate final confidence score
final_confidence = sum(confidence_scores) if confidence_scores else 0.0
# Apply aviation content boost (as mentioned in your demo)
aviation_keywords = ['flight', 'aircraft', 'aviation', 'airline', 'pilot', 'crash', 'airport']
if any(keyword in processed_text for keyword in aviation_keywords):
final_confidence = min(final_confidence + 0.1, 1.0) # +10% boost
# Determine if it's a threat
is_threat = final_confidence >= 0.6 or threat_prediction == 1
return {
"is_threat": is_threat,
"final_confidence": final_confidence,
"threat_prediction": threat_prediction,
"sentiment_analysis": predictions.get("sentiment"),
"onnx_prediction": predictions.get("onnx"),
"models_used": models_used,
"raw_predictions": predictions
}
except Exception as e:
logger.error(f"Error in threat prediction: {e}")
return self._create_empty_prediction()
def _text_to_features(self, text: str) -> np.ndarray:
"""Convert text to numerical features for ONNX model"""
try:
# Simple feature extraction - you may need to adjust based on your ONNX model requirements
# This is a basic approach, you might need to match your training preprocessing
# Basic text statistics
features = [
len(text), # text length
len(text.split()), # word count
text.count('!'), # exclamation marks
text.count('?'), # question marks
text.count('.'), # periods
]
# Add more features as needed for your specific ONNX model
# You might need to use the same vectorizer that was used during training
return np.array([features], dtype=np.float32)
except Exception as e:
logger.error(f"Error creating features: {e}")
return np.array([[0.0, 0.0, 0.0, 0.0, 0.0]], dtype=np.float32)
def _create_empty_prediction(self) -> Dict[str, Any]:
"""Create empty prediction result"""
return {
"is_threat": False,
"final_confidence": 0.0,
"threat_prediction": 0,
"sentiment_analysis": None,
"onnx_prediction": None,
"models_used": [],
"raw_predictions": {}
}
def get_status(self) -> Dict[str, Any]:
"""Get status of all models"""
return {
"models_loaded": self.models_loaded,
"threat_model": self.threat_model is not None,
"sentiment_model": self.sentiment_model is not None,
"onnx_model": self.onnx_session is not None,
"models_dir": str(self.models_dir),
"model_files": {
name: path.exists() for name, path in self.model_paths.items()
}
}
def analyze_batch(self, texts: List[str]) -> List[Dict[str, Any]]:
"""Analyze multiple texts in batch"""
return [self.predict_threat(text) for text in texts]