File size: 23,488 Bytes
4a50742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import joblib
import onnxruntime as ort
import numpy as np
from pathlib import Path
from typing import Dict, Any, Optional, List
import logging
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import warnings

# Suppress sklearn warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", message=".*sklearn.*")

logger = logging.getLogger(__name__)

class MLManager:
    """Centralized ML model manager for SafeSpace threat detection"""
    
    def __init__(self, models_dir: str = "models"):
        self.models_dir = Path(models_dir)
        self.models_loaded = False
        
        # Model instances
        self.threat_model = None
        self.sentiment_model = None
        self.onnx_session = None
        self.threat_vectorizer = None
        self.sentiment_vectorizer = None
        
        # Model paths
        self.model_paths = {
            "threat": self.models_dir / "Threat.pkl",
            "sentiment": self.models_dir / "sentiment.pkl", 
            "context": self.models_dir / "contextClassifier.onnx"
        }
        
        # Initialize models
        self._load_models()
    
    def _load_models(self) -> bool:
        """Load all ML models"""
        try:
            logger.info("Loading ML models...")
            
            # Load threat detection model
            if self.model_paths["threat"].exists():
                try:
                    with warnings.catch_warnings():
                        warnings.simplefilter("ignore")
                        self.threat_model = joblib.load(self.model_paths["threat"])
                    logger.info("✅ Threat model loaded successfully")
                except Exception as e:
                    logger.warning(f"⚠️ Failed to load threat model: {e}")
                    self.threat_model = None
            else:
                logger.error(f"❌ Threat model not found: {self.model_paths['threat']}")
            
            # Load sentiment analysis model
            if self.model_paths["sentiment"].exists():
                try:
                    with warnings.catch_warnings():
                        warnings.simplefilter("ignore")
                        self.sentiment_model = joblib.load(self.model_paths["sentiment"])
                    logger.info("✅ Sentiment model loaded successfully")
                except Exception as e:
                    logger.warning(f"⚠️ Failed to load sentiment model: {e}")
                    self.sentiment_model = None
            else:
                logger.error(f"❌ Sentiment model not found: {self.model_paths['sentiment']}")
            
            # Load ONNX context classifier
            if self.model_paths["context"].exists():
                try:
                    self.onnx_session = ort.InferenceSession(
                        str(self.model_paths["context"]),
                        providers=['CPUExecutionProvider']  # Specify CPU provider
                    )
                    logger.info("✅ ONNX context classifier loaded successfully")
                except Exception as e:
                    logger.warning(f"⚠️ Failed to load ONNX model: {e}")
                    self.onnx_session = None
            else:
                logger.error(f"❌ ONNX model not found: {self.model_paths['context']}")
            
            # Check if models are loaded
            models_available = [
                self.threat_model is not None,
                self.sentiment_model is not None,
                self.onnx_session is not None
            ]
            
            self.models_loaded = any(models_available)
            
            if self.models_loaded:
                logger.info(f"✅ ML Manager initialized with {sum(models_available)}/3 models")
            else:
                logger.warning("⚠️ No models loaded, falling back to rule-based detection")
            
            return self.models_loaded
            
        except Exception as e:
            logger.error(f"❌ Error loading models: {e}")
            self.models_loaded = False
            return False
    
    def _preprocess_text(self, text: str) -> str:
        """Preprocess text for model input"""
        if not text:
            return ""
        
        # Convert to lowercase
        text = text.lower()
        
        # Remove extra whitespace
        text = re.sub(r'\s+', ' ', text).strip()
        
        # Remove special characters but keep basic punctuation
        text = re.sub(r'[^\w\s\.,!?-]', '', text)
        
        return text
    
    def predict_threat(self, text: str) -> Dict[str, Any]:
        """Main threat prediction using ensemble of models"""
        try:
            processed_text = self._preprocess_text(text)
            
            if not processed_text:
                return self._create_empty_prediction()
            
            predictions = {}
            confidence_scores = []
            models_used = []
            
            # 1. Threat Detection Model
            threat_confidence = 0.0
            threat_prediction = 0
            if self.threat_model is not None:
                try:
                    # Ensure we have clean text input for threat detection
                    threat_input = processed_text if isinstance(processed_text, str) else str(processed_text)
                    
                    # Handle different model prediction formats
                    raw_prediction = self.threat_model.predict([threat_input])
                    
                    # Extract prediction value - handle both single values and arrays
                    if isinstance(raw_prediction, (list, np.ndarray)):
                        if len(raw_prediction) > 0:
                            pred_val = raw_prediction[0]
                            if isinstance(pred_val, (list, np.ndarray)) and len(pred_val) > 0:
                                threat_prediction = int(pred_val[0])
                            elif isinstance(pred_val, (int, float, np.integer, np.floating)):
                                threat_prediction = int(pred_val)
                            else:
                                logger.warning(f"Unexpected threat prediction format: {type(pred_val)} - {pred_val}")
                                threat_prediction = 0
                        else:
                            threat_prediction = 0
                    elif isinstance(raw_prediction, (int, float, np.integer, np.floating)):
                        threat_prediction = int(raw_prediction)
                    else:
                        logger.warning(f"Unexpected threat prediction type: {type(raw_prediction)} - {raw_prediction}")
                        threat_prediction = 0
                    
                    # Get confidence if available
                    if hasattr(self.threat_model, 'predict_proba'):
                        threat_proba = self.threat_model.predict_proba([threat_input])[0]
                        threat_confidence = float(max(threat_proba))
                    else:
                        threat_confidence = 0.8 if threat_prediction == 1 else 0.2
                    
                    predictions["threat"] = {
                        "prediction": threat_prediction,
                        "confidence": threat_confidence
                    }
                    confidence_scores.append(threat_confidence * 0.5)  # 50% weight
                    models_used.append("threat_classifier")
                except Exception as e:
                    logger.error(f"Threat model prediction failed: {e}")
                    # Provide fallback threat detection
                    threat_keywords = ['attack', 'violence', 'emergency', 'fire', 'accident', 'threat', 'danger', 'killed', 'death']
                    fallback_threat = 1 if any(word in processed_text for word in threat_keywords) else 0
                    fallback_confidence = 0.8 if fallback_threat == 1 else 0.2
                    
                    predictions["threat"] = {
                        "prediction": fallback_threat,
                        "confidence": fallback_confidence
                    }
                    confidence_scores.append(fallback_confidence * 0.5)
                    models_used.append("fallback_threat")
            
            # 2. Sentiment Analysis Model
            sentiment_confidence = 0.0
            sentiment_prediction = 0
            if self.sentiment_model is not None:
                try:
                    # Ensure we have clean text input for sentiment analysis
                    sentiment_input = processed_text if isinstance(processed_text, str) else str(processed_text)
                    
                    # Handle different model prediction formats
                    raw_prediction = self.sentiment_model.predict([sentiment_input])
                    
                    # Extract prediction value - handle both single values and arrays
                    if isinstance(raw_prediction, (list, np.ndarray)):
                        if len(raw_prediction) > 0:
                            pred_val = raw_prediction[0]
                            if isinstance(pred_val, (list, np.ndarray)) and len(pred_val) > 0:
                                # Handle numeric prediction values safely
                                try:
                                    sentiment_prediction = int(pred_val[0])
                                except (ValueError, TypeError):
                                    # Handle non-numeric predictions gracefully
                                    logger.debug(f"Non-numeric prediction value: {pred_val[0]}, using default")
                                    sentiment_prediction = 0
                            elif isinstance(pred_val, (int, float, np.integer, np.floating)):
                                # Handle numeric prediction values safely
                                try:
                                    sentiment_prediction = int(pred_val)
                                except (ValueError, TypeError):
                                    # Handle non-numeric predictions gracefully
                                    logger.debug(f"Non-numeric prediction value: {pred_val}, using default")
                                    sentiment_prediction = 0
                            elif isinstance(pred_val, dict):
                                # Handle dictionary prediction format (common with transformers models)
                                label = pred_val.get("label", "").lower()
                                score = pred_val.get("score", 0.0)
                                
                                # Map emotions to binary sentiment (0=negative, 1=positive)
                                negative_emotions = ["fear", "anger", "sadness", "disgust"]
                                positive_emotions = ["joy", "surprise", "love", "happiness"]
                                
                                if label in negative_emotions:
                                    sentiment_prediction = 0  # Negative
                                elif label in positive_emotions:
                                    sentiment_prediction = 1  # Positive
                                else:
                                    # Default handling for unknown labels
                                    sentiment_prediction = 0 if score < 0.5 else 1
                                
                                # Use the score from the prediction
                                sentiment_confidence = float(score)
                                logger.debug(f"Processed emotion '{label}' -> sentiment: {sentiment_prediction} (confidence: {sentiment_confidence})")
                            else:
                                logger.warning(f"Unexpected sentiment prediction format: {type(pred_val)} - {pred_val}")
                                sentiment_prediction = 0
                        else:
                            sentiment_prediction = 0
                    elif isinstance(raw_prediction, (int, float, np.integer, np.floating)):
                        # Handle single numeric prediction values safely
                        try:
                            sentiment_prediction = int(raw_prediction)
                        except (ValueError, TypeError):
                            # Handle non-numeric predictions gracefully
                            logger.debug(f"Non-numeric raw prediction: {raw_prediction}, using default")
                            sentiment_prediction = 0
                    else:
                        logger.warning(f"Unexpected sentiment prediction type: {type(raw_prediction)} - {raw_prediction}")
                        sentiment_prediction = 0
                    
                    # Get confidence if available
                    if hasattr(self.sentiment_model, 'predict_proba'):
                        sentiment_proba = self.sentiment_model.predict_proba([sentiment_input])[0]
                        sentiment_confidence = float(max(sentiment_proba))
                    else:
                        sentiment_confidence = 0.7 if sentiment_prediction == 0 else 0.3  # Negative sentiment = higher threat
                    
                    # Determine sentiment label
                    sentiment_label = "negative" if sentiment_prediction == 0 else "positive"
                    
                    # If we got a label from the dictionary prediction, use that instead
                    if 'label' in locals():
                        sentiment_label = label
                    
                    predictions["sentiment"] = {
                        "prediction": sentiment_prediction,
                        "confidence": sentiment_confidence,
                        "label": sentiment_label
                    }
                    # Negative sentiment contributes to threat score
                    sentiment_threat_score = (1 - sentiment_prediction) * sentiment_confidence * 0.2  # 20% weight
                    confidence_scores.append(sentiment_threat_score)
                    models_used.append("sentiment_classifier")
                except Exception as e:
                    logger.error(f"Sentiment model prediction failed: {e}")
                    # Provide fallback sentiment analysis
                    negative_words = ['attack', 'violence', 'death', 'killed', 'emergency', 'fire', 'accident', 'threat']
                    fallback_sentiment = 0 if any(word in processed_text for word in negative_words) else 1
                    predictions["sentiment"] = {
                        "prediction": fallback_sentiment,
                        "confidence": 0.6,
                        "label": "negative" if fallback_sentiment == 0 else "positive"
                    }
                    sentiment_threat_score = (1 - fallback_sentiment) * 0.6 * 0.2
                    confidence_scores.append(sentiment_threat_score)
                    models_used.append("fallback_sentiment")
            
            # 3. ONNX Context Classifier
            onnx_confidence = 0.0
            onnx_prediction = 0
            if self.onnx_session is not None:
                try:
                    # Check what inputs the ONNX model expects
                    input_names = [inp.name for inp in self.onnx_session.get_inputs()]
                    
                    if 'input_ids' in input_names and 'attention_mask' in input_names:
                        # This is likely a transformer model (BERT-like)
                        # Create simple tokenized input (basic approach)
                        tokens = processed_text.split()[:50]  # Limit to 50 tokens
                        # Simple word-to-ID mapping (this is a fallback approach)
                        input_ids = [hash(word) % 1000 + 1 for word in tokens]  # Simple hash-based IDs
                        
                        # Pad or truncate to fixed length
                        max_length = 128
                        if len(input_ids) < max_length:
                            input_ids.extend([0] * (max_length - len(input_ids)))
                        else:
                            input_ids = input_ids[:max_length]
                        
                        attention_mask = [1 if i != 0 else 0 for i in input_ids]
                        
                        # Convert to numpy arrays with correct shape
                        input_ids_array = np.array([input_ids], dtype=np.int64)
                        attention_mask_array = np.array([attention_mask], dtype=np.int64)
                        
                        inputs = {
                            'input_ids': input_ids_array,
                            'attention_mask': attention_mask_array
                        }
                        
                        onnx_output = self.onnx_session.run(None, inputs)
                        
                        # Extract prediction from output
                        if len(onnx_output) > 0 and len(onnx_output[0]) > 0:
                            # Handle different output formats
                            output = onnx_output[0][0]
                            if isinstance(output, (list, np.ndarray)) and len(output) > 1:
                                # Probability output
                                probs = output
                                onnx_prediction = int(np.argmax(probs))
                                onnx_confidence = float(max(probs))
                            else:
                                # Single value output
                                onnx_prediction = int(output > 0.5)
                                onnx_confidence = float(abs(output))
                        
                    else:
                        # Use the original simple feature approach
                        input_name = input_names[0] if input_names else 'input'
                        text_features = self._text_to_features(processed_text)
                        
                        onnx_output = self.onnx_session.run(None, {input_name: text_features})
                        onnx_prediction = int(onnx_output[0][0]) if len(onnx_output[0]) > 0 else 0
                        onnx_confidence = float(onnx_output[1][0][1]) if len(onnx_output) > 1 else 0.5
                    
                    predictions["onnx"] = {
                        "prediction": onnx_prediction,
                        "confidence": onnx_confidence
                    }
                    confidence_scores.append(onnx_confidence * 0.3)  # 30% weight
                    models_used.append("context_classifier")
                    
                except Exception as e:
                    logger.error(f"ONNX model prediction failed: {e}")
                    # Provide fallback based on keyword analysis
                    threat_keywords = ['emergency', 'attack', 'violence', 'fire', 'accident', 'threat', 'danger']
                    fallback_confidence = len([w for w in threat_keywords if w in processed_text]) / len(threat_keywords)
                    fallback_prediction = 1 if fallback_confidence > 0.3 else 0
                    
                    predictions["onnx"] = {
                        "prediction": fallback_prediction,
                        "confidence": fallback_confidence
                    }
                    confidence_scores.append(fallback_confidence * 0.3)
                    models_used.append("fallback_context")
            
            # Calculate final confidence score
            final_confidence = sum(confidence_scores) if confidence_scores else 0.0
            
            # Apply aviation content boost (as mentioned in your demo)
            aviation_keywords = ['flight', 'aircraft', 'aviation', 'airline', 'pilot', 'crash', 'airport']
            if any(keyword in processed_text for keyword in aviation_keywords):
                final_confidence = min(final_confidence + 0.1, 1.0)  # +10% boost
            
            # Determine if it's a threat
            is_threat = final_confidence >= 0.6 or threat_prediction == 1
            
            return {
                "is_threat": is_threat,
                "final_confidence": final_confidence,
                "threat_prediction": threat_prediction,
                "sentiment_analysis": predictions.get("sentiment"),
                "onnx_prediction": predictions.get("onnx"),
                "models_used": models_used,
                "raw_predictions": predictions
            }
            
        except Exception as e:
            logger.error(f"Error in threat prediction: {e}")
            return self._create_empty_prediction()
    
    def _text_to_features(self, text: str) -> np.ndarray:
        """Convert text to numerical features for ONNX model"""
        try:
            # Simple feature extraction - you may need to adjust based on your ONNX model requirements
            # This is a basic approach, you might need to match your training preprocessing
            
            # Basic text statistics
            features = [
                len(text),  # text length
                len(text.split()),  # word count
                text.count('!'),  # exclamation marks
                text.count('?'),  # question marks
                text.count('.'),  # periods
            ]
            
            # Add more features as needed for your specific ONNX model
            # You might need to use the same vectorizer that was used during training
            
            return np.array([features], dtype=np.float32)
        except Exception as e:
            logger.error(f"Error creating features: {e}")
            return np.array([[0.0, 0.0, 0.0, 0.0, 0.0]], dtype=np.float32)
    
    def _create_empty_prediction(self) -> Dict[str, Any]:
        """Create empty prediction result"""
        return {
            "is_threat": False,
            "final_confidence": 0.0,
            "threat_prediction": 0,
            "sentiment_analysis": None,
            "onnx_prediction": None,
            "models_used": [],
            "raw_predictions": {}
        }
    
    def get_status(self) -> Dict[str, Any]:
        """Get status of all models"""
        return {
            "models_loaded": self.models_loaded,
            "threat_model": self.threat_model is not None,
            "sentiment_model": self.sentiment_model is not None,
            "onnx_model": self.onnx_session is not None,
            "models_dir": str(self.models_dir),
            "model_files": {
                name: path.exists() for name, path in self.model_paths.items()
            }
        }
    
    def analyze_batch(self, texts: List[str]) -> List[Dict[str, Any]]:
        """Analyze multiple texts in batch"""
        return [self.predict_threat(text) for text in texts]