Spaces:
Runtime error
AltDiffusion
AltDiffusion was proposed in AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu.
The abstract from the paper is:
In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model. Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.
Tips
AltDiffusion
is conceptually the same as Stable Diffusion.
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
AltDiffusionPipeline
[[autodoc]] AltDiffusionPipeline - all - call
AltDiffusionImg2ImgPipeline
[[autodoc]] AltDiffusionImg2ImgPipeline - all - call
AltDiffusionPipelineOutput
[[autodoc]] pipelines.alt_diffusion.AltDiffusionPipelineOutput - all - call