File size: 9,568 Bytes
1ee3bf0
c644570
1ee3bf0
a63d2a4
 
1ee3bf0
a63d2a4
 
35ffdbd
d70699a
1ee3bf0
33469f8
1ee3bf0
a63d2a4
ede7254
7f96cda
a63d2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae12bf
c7d558b
a63d2a4
 
 
 
 
 
 
35ffdbd
a63d2a4
 
 
 
35ffdbd
 
ede7254
35ffdbd
 
 
 
1ee3bf0
 
 
 
 
 
 
 
a63d2a4
cad6ebe
 
a750c0e
35ffdbd
bc789e5
 
 
2e08ffe
bc789e5
2e08ffe
ede7254
07fe287
bc789e5
ee7e3f6
d70699a
ede7254
 
bc789e5
 
 
3c77757
2e08ffe
8603848
3c77757
a63d2a4
3c77757
a63d2a4
1ee3bf0
 
 
33469f8
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee3bf0
 
33469f8
1ee3bf0
 
33469f8
1ee3bf0
d70699a
 
ede7254
33469f8
 
 
 
 
 
 
 
 
 
 
 
 
 
3c77757
1ee3bf0
b2c85ec
a63d2a4
 
33469f8
 
 
 
a63d2a4
 
 
33469f8
1ee3bf0
33469f8
737d099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
 
 
 
 
 
 
 
 
1ee3bf0
b2c85ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import torch

from diffuserslocal.src.diffusers import UNet2DConditionModel
import diffuserslocal.src.diffusers as diffusers
from share_btn import community_icon_html, loading_icon_html, share_js
from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
from PIL import Image
import numpy as np
import cv2

device = "cuda" if torch.cuda.is_available() else "cpu"

# Inpainting pipeline


unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)

# Depth estimation
model_type = "DPT_Large"     # MiDaS v3 - Large     (highest accuracy, slowest inference speed)
#model_type = "DPT_Hybrid"   # MiDaS v3 - Hybrid    (medium accuracy, medium inference speed)
#model_type = "MiDaS_small"  # MiDaS v2.1 - Small   (lowest accuracy, highest inference speed)

midas = torch.hub.load("intel-isl/MiDaS", model_type)

midas.to(device)
midas.eval()

midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
    transform = midas_transforms.dpt_transform
else:
    transform = midas_transforms.small_transform


def estimate_depth(image):

    input_batch = transform(image).to(device)

    with torch.no_grad():
        prediction = midas(input_batch)

        prediction = torch.nn.functional.interpolate(
            prediction.unsqueeze(1),
            size=image.shape[:2],
            mode="bicubic",
            align_corners=False,
        ).squeeze()

    output = prediction.cpu().numpy()

    output= 255 * (output - np.min(output))/(np.max(output) - np.min(output))
    
    return Image.fromarray(output.astype("uint8"))


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
    if negative_prompt == "":
        negative_prompt = None
    scheduler_class_name = scheduler.split("-")[0]

    init_image = cv2.cvtColor(cv2.resize(dict["image"], (512, 512)), cv2.COLOR_BGR2RGB)
    cv2.imwrite("temp.jpg", init_image)

    mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
    mask.save("temp_mask.jpg")

    if (depth is None):
        depth_image = estimate_depth(init_image)
        
    else:
        depth_image = depth
        depth_image = Image.fromarray(depth_image[:,:,0].astype("uint8"))

    depth_image.save("temp_depth.jpg")
    #scheduler = getattr(diffusers, scheduler_class_name)
    #pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
    
    
    depth_image = depth_image.resize((512, 512))
    
    output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
    
    return output.rgb[0], output.depth[0], gr.update(visible=True)


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
                    depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
                    
                    with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
                        with gr.Row():
                            prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
                            btn = gr.Button("Inpaint!", elem_id="run_button")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row(mobile_collapse=False, equal_height=True):
                            guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
                            steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
                            strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
                            negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
                        with gr.Row(mobile_collapse=False, equal_height=True):
                            schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
                            scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
                        
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img", height=400)
                    depth_out = gr.Image(label="Depth", elem_id="depth-img", height=400)

                    with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
                        community_icon = gr.HTML(community_icon_html)
                        loading_icon = gr.HTML(loading_icon_html)
                        share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)

    btn.click(fn=predict, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container], api_name='run')
    prompt.submit(fn=predict, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container])
    share_button.click(None, [], [], _js=share_js)

    gr.Examples(
                examples=[
                    ["./imgs/aaa (8).png"],
                    ["./imgs/download (1).jpeg"],
                    ["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
                    ["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
                    ["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
                    ["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
                    ["./imgs/canam-electric-motorcycles-scaled.jpg"],
                    ["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
                    ["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
                    ["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
                ],
                fn=predict,
                inputs=[image],
                cache_examples=False,
    )
    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25).launch()