Spaces:
Runtime error
Runtime error
pablo
commited on
Commit
·
ede7254
1
Parent(s):
d70699a
asdasd
Browse files
app.py
CHANGED
@@ -12,6 +12,8 @@ import cv2
|
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
# Inpainting pipeline
|
|
|
|
|
15 |
unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
|
16 |
pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)
|
17 |
|
@@ -50,7 +52,7 @@ def estimate_depth(image):
|
|
50 |
|
51 |
output = prediction.cpu().numpy()
|
52 |
|
53 |
-
output= 255 * output/np.max(output)
|
54 |
|
55 |
return Image.fromarray(output.astype("uint8"))
|
56 |
|
@@ -70,11 +72,12 @@ def predict(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, step
|
|
70 |
|
71 |
init_image = cv2.resize(dict["image"], (512, 512))
|
72 |
|
73 |
-
if (depth
|
74 |
depth_image = estimate_depth(init_image)
|
75 |
else:
|
76 |
depth_image = depth
|
77 |
-
|
|
|
78 |
scheduler = getattr(diffusers, scheduler_class_name)
|
79 |
pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
|
80 |
|
@@ -130,7 +133,7 @@ with image_blocks as demo:
|
|
130 |
with gr.Column():
|
131 |
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
|
132 |
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
|
133 |
-
|
134 |
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
|
135 |
with gr.Row():
|
136 |
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
|
|
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
# Inpainting pipeline
|
15 |
+
|
16 |
+
|
17 |
unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
|
18 |
pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)
|
19 |
|
|
|
52 |
|
53 |
output = prediction.cpu().numpy()
|
54 |
|
55 |
+
output= 255 * (output - np.min(output))/(np.max(output) - np.min(output))
|
56 |
|
57 |
return Image.fromarray(output.astype("uint8"))
|
58 |
|
|
|
72 |
|
73 |
init_image = cv2.resize(dict["image"], (512, 512))
|
74 |
|
75 |
+
if (depth is None):
|
76 |
depth_image = estimate_depth(init_image)
|
77 |
else:
|
78 |
depth_image = depth
|
79 |
+
depth_image = Image.fromarray(depth_image[:,:,0].astype("uint8"))
|
80 |
+
|
81 |
scheduler = getattr(diffusers, scheduler_class_name)
|
82 |
pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
|
83 |
|
|
|
133 |
with gr.Column():
|
134 |
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
|
135 |
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
|
136 |
+
|
137 |
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
|
138 |
with gr.Row():
|
139 |
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
|