Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
def is_torch2_available(): | |
return hasattr(F, "scaled_dot_product_attention") | |
if is_torch2_available(): | |
from .attention_processor import HairAttnProcessor2_0 as HairAttnProcessor, AttnProcessor2_0 as AttnProcessor | |
else: | |
from .attention_processor import HairAttnProcessor, AttnProcessor | |
def adapter_injection(unet, device="cuda", dtype=torch.float32, use_resampler=False, continue_learning_path=None): | |
device = device | |
dtype = dtype | |
# load Hair attention layers | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = HairAttnProcessor(hidden_size=hidden_size, cross_attention_dim=hidden_size, scale=1, use_resampler=use_resampler).to(device, dtype=dtype) | |
else: | |
attn_procs[name] = AttnProcessor() | |
unet.set_attn_processor(attn_procs) | |
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) | |
adapter_layers = adapter_modules | |
adapter_layers.to(device, dtype=dtype) | |
return adapter_layers | |
def set_scale(unet, scale): | |
for attn_processor in unet.attn_processors.values(): | |
if isinstance(attn_processor, HairAttnProcessor): | |
attn_processor.scale = scale |