import torch import torch.nn.functional as F def is_torch2_available(): return hasattr(F, "scaled_dot_product_attention") if is_torch2_available(): from .attention_processor import HairAttnProcessor2_0 as HairAttnProcessor, AttnProcessor2_0 as AttnProcessor else: from .attention_processor import HairAttnProcessor, AttnProcessor def adapter_injection(unet, device="cuda", dtype=torch.float32, use_resampler=False, continue_learning_path=None): device = device dtype = dtype # load Hair attention layers attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] if cross_attention_dim is None: attn_procs[name] = HairAttnProcessor(hidden_size=hidden_size, cross_attention_dim=hidden_size, scale=1, use_resampler=use_resampler).to(device, dtype=dtype) else: attn_procs[name] = AttnProcessor() unet.set_attn_processor(attn_procs) adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) adapter_layers = adapter_modules adapter_layers.to(device, dtype=dtype) return adapter_layers def set_scale(unet, scale): for attn_processor in unet.attn_processors.values(): if isinstance(attn_processor, HairAttnProcessor): attn_processor.scale = scale