Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| import pandas as pd | |
| import plotly.express as px | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from src.assets.text_content import ( | |
| TITLE, | |
| INTRODUCTION_TEXT, | |
| SINGLE_A100_TEXT, | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| ) | |
| from src.utils import ( | |
| restart_space, | |
| load_dataset_repo, | |
| make_clickable_model, | |
| make_clickable_score, | |
| num_to_str, | |
| ) | |
| from src.assets.css_html_js import custom_css | |
| LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" | |
| LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" | |
| OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) | |
| COLUMNS_MAPPING = { | |
| "model": "Model π€", | |
| "backend.name": "Backend π", | |
| "backend.torch_dtype": "Load Dtype π₯", | |
| "optimizations": "Optimizations π οΈ", | |
| # | |
| "generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ", | |
| "forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ", | |
| "average": "Average Open LLM Score β¬οΈ", | |
| # | |
| "num_parameters": "#οΈβ£ Parameters π", | |
| } | |
| COLUMNS_DATATYPES = [ | |
| "markdown", | |
| "str", | |
| "str", | |
| "str", | |
| # | |
| "number", | |
| "number", | |
| "markdown", | |
| # | |
| "str", | |
| ] | |
| SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"] | |
| llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) | |
| def get_benchmark_df(benchmark="1xA100-80GB"): | |
| if llm_perf_dataset_repo: | |
| llm_perf_dataset_repo.git_pull() | |
| # load | |
| bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv") | |
| scores_df = pd.read_csv(f"./llm-perf-dataset/reports/additional_data.csv") | |
| bench_df = bench_df.merge(scores_df, on="model", how="left") | |
| bench_df["optimizations"] = bench_df[ | |
| ["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"] | |
| ].apply( | |
| lambda x: ", ".join([opt for opt in x.index if x[opt] == True]), | |
| axis=1, | |
| ) | |
| return bench_df | |
| def get_benchmark_table(bench_df): | |
| # filter | |
| bench_df = bench_df[list(COLUMNS_MAPPING.keys())] | |
| # rename | |
| bench_df.rename(columns=COLUMNS_MAPPING, inplace=True) | |
| # sort | |
| bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) | |
| # transform | |
| bench_df["Model π€"] = bench_df["Model π€"].apply(make_clickable_model) | |
| bench_df["#οΈβ£ Parameters π"] = bench_df["#οΈβ£ Parameters π"].apply(num_to_str) | |
| bench_df["Average Open LLM Score β¬οΈ"] = bench_df["Average Open LLM Score β¬οΈ"].apply( | |
| make_clickable_score | |
| ) | |
| return bench_df | |
| def get_benchmark_plot(bench_df): | |
| # untill falcon gets fixed / natively supported | |
| bench_df = bench_df[bench_df["generate.latency(s)"] < 100] | |
| fig = px.scatter( | |
| bench_df, | |
| x="generate.latency(s)", | |
| y="average", | |
| color="model_type", | |
| symbol="backend.name", | |
| size="forward.peak_memory(MB)", | |
| custom_data=[ | |
| "model", | |
| "backend.name", | |
| "backend.torch_dtype", | |
| "optimizations", | |
| "forward.peak_memory(MB)", | |
| "generate.throughput(tokens/s)", | |
| ], | |
| symbol_sequence=["triangle-up", "circle"], | |
| # as many distinct colors as there are model_type,backend.name couples | |
| color_discrete_sequence=px.colors.qualitative.Light24, | |
| ) | |
| fig.update_layout( | |
| title={ | |
| "text": "Model Score vs. Latency vs. Memory", | |
| "y": 0.95, | |
| "x": 0.5, | |
| "xanchor": "center", | |
| "yanchor": "top", | |
| }, | |
| xaxis_title="Per 1000 Tokens Latency (s)", | |
| yaxis_title="Average Open LLM Score", | |
| legend_title="Model Type and Backend", | |
| width=1200, | |
| height=600, | |
| ) | |
| fig.update_traces( | |
| hovertemplate="<br>".join( | |
| [ | |
| "Model: %{customdata[0]}", | |
| "Backend: %{customdata[1]}", | |
| "Datatype: %{customdata[2]}", | |
| "Optimizations: %{customdata[3]}", | |
| "Peak Memory (MB): %{customdata[4]}", | |
| "Throughput (tokens/s): %{customdata[5]}", | |
| "Average Open LLM Score: %{y}", | |
| "Per 1000 Tokens Latency (s): %{x}", | |
| ] | |
| ) | |
| ) | |
| return fig | |
| def filter_query( | |
| text, backends, datatypes, optimizations, threshold, benchmark="1xA100-80GB" | |
| ): | |
| raw_df = get_benchmark_df(benchmark=benchmark) | |
| filtered_df = raw_df[ | |
| raw_df["model"].str.lower().str.contains(text.lower()) | |
| & raw_df["backend.name"].isin(backends) | |
| & raw_df["backend.torch_dtype"].isin(datatypes) | |
| & pd.concat( | |
| [ | |
| raw_df["optimizations"].str.contains(optimization) | |
| for optimization in optimizations | |
| ], | |
| axis=1, | |
| ).any(axis=1) | |
| & (raw_df["average"] >= threshold) | |
| ] | |
| filtered_table = get_benchmark_table(filtered_df) | |
| filtered_plot = get_benchmark_plot(filtered_df) | |
| return filtered_table, filtered_plot | |
| # Dataframes | |
| single_A100_df = get_benchmark_df(benchmark="1xA100-80GB") | |
| single_A100_table = get_benchmark_table(single_A100_df) | |
| single_A100_plot = get_benchmark_plot(single_A100_df) | |
| # Demo interface | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| # leaderboard title | |
| gr.HTML(TITLE) | |
| # introduction text | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| # control panel title | |
| gr.HTML("<h2>Control Panel ποΈ</h2>") | |
| # control panel interface | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| label="Model π€", | |
| info="π Search for a model name", | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| backend_checkboxes = gr.CheckboxGroup( | |
| label="Backends π", | |
| choices=["pytorch", "onnxruntime"], | |
| value=["pytorch", "onnxruntime"], | |
| info="βοΈ Select the backends", | |
| elem_id="backend-checkboxes", | |
| ) | |
| datatype_checkboxes = gr.CheckboxGroup( | |
| label="Datatypes π₯", | |
| choices=["float32", "float16"], | |
| value=["float32", "float16"], | |
| info="βοΈ Select the load datatypes", | |
| elem_id="datatype-checkboxes", | |
| ) | |
| optimizations_checkboxes = gr.CheckboxGroup( | |
| label="Optimizations π οΈ", | |
| choices=["BetterTransformer", "LLM.int8", "NF4"], | |
| value=[], | |
| info="βοΈ Select the optimizations", | |
| elem_id="optimizations-checkboxes", | |
| ) | |
| with gr.Row(): | |
| score_slider = gr.Slider( | |
| label="Average Open LLM Score π", | |
| info="ποΈ Slide to minimum Average Open LLM score", | |
| value=0.0, | |
| elem_id="threshold-slider", | |
| ) | |
| with gr.Row(): | |
| filter_button = gr.Button( | |
| value="Filter π", | |
| elem_id="filter-button", | |
| ) | |
| # leaderboard tabs | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π₯οΈ A100-80GB Leaderboard π", id=0): | |
| gr.HTML(SINGLE_A100_TEXT) | |
| # Original leaderboard table | |
| single_A100_leaderboard = gr.components.Dataframe( | |
| value=single_A100_table, | |
| datatype=COLUMNS_DATATYPES, | |
| headers=list(COLUMNS_MAPPING.values()), | |
| elem_id="1xA100-table", | |
| ) | |
| with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1): | |
| # Original leaderboard plot | |
| gr.HTML(SINGLE_A100_TEXT) | |
| # Original leaderboard plot | |
| single_A100_plotly = gr.components.Plot( | |
| value=single_A100_plot, | |
| elem_id="1xA100-plot", | |
| show_label=False, | |
| ) | |
| filter_button.click( | |
| filter_query, | |
| [ | |
| search_bar, | |
| backend_checkboxes, | |
| datatype_checkboxes, | |
| optimizations_checkboxes, | |
| score_slider, | |
| ], | |
| [single_A100_leaderboard, single_A100_plotly], | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| elem_id="citation-button", | |
| ).style(show_copy_button=True) | |
| # Restart space every hour | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job( | |
| restart_space, | |
| "interval", | |
| seconds=3600, | |
| args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN], | |
| ) | |
| scheduler.start() | |
| # Launch demo | |
| demo.queue(concurrency_count=40).launch() | |