Spaces:
Running
Running
Commit
Β·
97058d0
1
Parent(s):
89517bf
added optimizations to control panel
Browse files
app.py
CHANGED
|
@@ -31,8 +31,8 @@ COLUMNS_MAPPING = {
|
|
| 31 |
"backend.torch_dtype": "Load Dtype π₯",
|
| 32 |
"optimizations": "Optimizations π οΈ",
|
| 33 |
#
|
| 34 |
-
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
| 35 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
|
|
|
| 36 |
"average": "Average Open LLM Score β¬οΈ",
|
| 37 |
#
|
| 38 |
"num_parameters": "#οΈβ£ Parameters π",
|
|
@@ -67,11 +67,7 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
|
|
| 67 |
bench_df["optimizations"] = bench_df[
|
| 68 |
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
|
| 69 |
].apply(
|
| 70 |
-
lambda x: "
|
| 71 |
-
if x[0] == True
|
| 72 |
-
else (
|
| 73 |
-
"LLM.int8 ποΈ" if x[1] == True else ("NF4 ποΈ" if x[2] == True else "")
|
| 74 |
-
),
|
| 75 |
axis=1,
|
| 76 |
)
|
| 77 |
|
|
@@ -151,13 +147,22 @@ def get_benchmark_plot(bench_df):
|
|
| 151 |
return fig
|
| 152 |
|
| 153 |
|
| 154 |
-
def filter_query(
|
|
|
|
|
|
|
| 155 |
raw_df = get_benchmark_df(benchmark=benchmark)
|
| 156 |
|
| 157 |
filtered_df = raw_df[
|
| 158 |
raw_df["model"].str.lower().str.contains(text.lower())
|
| 159 |
& raw_df["backend.name"].isin(backends)
|
| 160 |
& raw_df["backend.torch_dtype"].isin(datatypes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
& (raw_df["average"] >= threshold)
|
| 162 |
]
|
| 163 |
|
|
@@ -191,6 +196,8 @@ with demo:
|
|
| 191 |
info="π Search for a model name",
|
| 192 |
elem_id="search-bar",
|
| 193 |
)
|
|
|
|
|
|
|
| 194 |
backend_checkboxes = gr.CheckboxGroup(
|
| 195 |
label="Backends π",
|
| 196 |
choices=["pytorch", "onnxruntime"],
|
|
@@ -205,7 +212,16 @@ with demo:
|
|
| 205 |
info="βοΈ Select the load datatypes",
|
| 206 |
elem_id="datatype-checkboxes",
|
| 207 |
)
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
label="Average Open LLM Score π",
|
| 210 |
info="ποΈ Slide to minimum Average Open LLM score",
|
| 211 |
value=0.0,
|
|
@@ -213,9 +229,9 @@ with demo:
|
|
| 213 |
)
|
| 214 |
|
| 215 |
with gr.Row():
|
| 216 |
-
|
| 217 |
value="Filter π",
|
| 218 |
-
elem_id="
|
| 219 |
)
|
| 220 |
|
| 221 |
# leaderboard tabs
|
|
@@ -242,9 +258,15 @@ with demo:
|
|
| 242 |
show_label=False,
|
| 243 |
)
|
| 244 |
|
| 245 |
-
|
| 246 |
filter_query,
|
| 247 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
[single_A100_leaderboard, single_A100_plotly],
|
| 249 |
)
|
| 250 |
|
|
|
|
| 31 |
"backend.torch_dtype": "Load Dtype π₯",
|
| 32 |
"optimizations": "Optimizations π οΈ",
|
| 33 |
#
|
|
|
|
| 34 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
| 35 |
+
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
| 36 |
"average": "Average Open LLM Score β¬οΈ",
|
| 37 |
#
|
| 38 |
"num_parameters": "#οΈβ£ Parameters π",
|
|
|
|
| 67 |
bench_df["optimizations"] = bench_df[
|
| 68 |
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
|
| 69 |
].apply(
|
| 70 |
+
lambda x: ", ".join([opt for opt in x.index if x[opt] == True]),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
axis=1,
|
| 72 |
)
|
| 73 |
|
|
|
|
| 147 |
return fig
|
| 148 |
|
| 149 |
|
| 150 |
+
def filter_query(
|
| 151 |
+
text, backends, datatypes, optimizations, threshold, benchmark="1xA100-80GB"
|
| 152 |
+
):
|
| 153 |
raw_df = get_benchmark_df(benchmark=benchmark)
|
| 154 |
|
| 155 |
filtered_df = raw_df[
|
| 156 |
raw_df["model"].str.lower().str.contains(text.lower())
|
| 157 |
& raw_df["backend.name"].isin(backends)
|
| 158 |
& raw_df["backend.torch_dtype"].isin(datatypes)
|
| 159 |
+
& pd.concat(
|
| 160 |
+
[
|
| 161 |
+
raw_df["optimizations"].str.contains(optimization)
|
| 162 |
+
for optimization in optimizations
|
| 163 |
+
],
|
| 164 |
+
axis=1,
|
| 165 |
+
).any(axis=1)
|
| 166 |
& (raw_df["average"] >= threshold)
|
| 167 |
]
|
| 168 |
|
|
|
|
| 196 |
info="π Search for a model name",
|
| 197 |
elem_id="search-bar",
|
| 198 |
)
|
| 199 |
+
|
| 200 |
+
with gr.Row():
|
| 201 |
backend_checkboxes = gr.CheckboxGroup(
|
| 202 |
label="Backends π",
|
| 203 |
choices=["pytorch", "onnxruntime"],
|
|
|
|
| 212 |
info="βοΈ Select the load datatypes",
|
| 213 |
elem_id="datatype-checkboxes",
|
| 214 |
)
|
| 215 |
+
optimizations_checkboxes = gr.CheckboxGroup(
|
| 216 |
+
label="Optimizations π οΈ",
|
| 217 |
+
choices=["BetterTransformer", "LLM.int8", "NF4"],
|
| 218 |
+
value=[],
|
| 219 |
+
info="βοΈ Select the optimizations",
|
| 220 |
+
elem_id="optimizations-checkboxes",
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
with gr.Row():
|
| 224 |
+
score_slider = gr.Slider(
|
| 225 |
label="Average Open LLM Score π",
|
| 226 |
info="ποΈ Slide to minimum Average Open LLM score",
|
| 227 |
value=0.0,
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
with gr.Row():
|
| 232 |
+
filter_button = gr.Button(
|
| 233 |
value="Filter π",
|
| 234 |
+
elem_id="filter-button",
|
| 235 |
)
|
| 236 |
|
| 237 |
# leaderboard tabs
|
|
|
|
| 258 |
show_label=False,
|
| 259 |
)
|
| 260 |
|
| 261 |
+
filter_button.click(
|
| 262 |
filter_query,
|
| 263 |
+
[
|
| 264 |
+
search_bar,
|
| 265 |
+
backend_checkboxes,
|
| 266 |
+
datatype_checkboxes,
|
| 267 |
+
optimizations_checkboxes,
|
| 268 |
+
score_slider,
|
| 269 |
+
],
|
| 270 |
[single_A100_leaderboard, single_A100_plotly],
|
| 271 |
)
|
| 272 |
|