Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,84 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
|
3 |
-
|
4 |
from docx import Document
|
|
|
5 |
import requests
|
6 |
from bs4 import BeautifulSoup
|
7 |
-
import faiss
|
8 |
-
import numpy as np
|
9 |
-
from sentence_transformers import SentenceTransformer
|
10 |
from langdetect import detect
|
|
|
11 |
|
12 |
# Initialize models and pipeline
|
13 |
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased")
|
14 |
embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
15 |
|
16 |
# FAISS index setup (in-memory for this example)
|
17 |
-
|
18 |
-
|
19 |
|
20 |
# Initialize translation model for on-the-fly translation
|
21 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
22 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
23 |
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def translate_text(text, src_lang, tgt_lang):
|
|
|
26 |
tokenizer.src_lang = src_lang
|
27 |
encoded = tokenizer(text, return_tensors="pt")
|
28 |
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(tgt_lang))
|
29 |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Sidebar for navigation
|
32 |
st.sidebar.title("Navigation")
|
33 |
page = st.sidebar.radio("Go to", ["Upload Knowledge", "Q&A"])
|
@@ -57,6 +108,15 @@ if page == "Upload Knowledge":
|
|
57 |
detected_lang = detect(text)
|
58 |
st.write(f"Detected language: {detected_lang}")
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
texts.append(text)
|
61 |
|
62 |
# Process URL
|
@@ -64,12 +124,20 @@ if page == "Upload Knowledge":
|
|
64 |
response = requests.get(url)
|
65 |
soup = BeautifulSoup(response.text, 'html.parser')
|
66 |
text = soup.get_text()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
texts.append(text)
|
68 |
|
69 |
-
# Create embeddings and store in FAISS
|
70 |
-
embeddings = embedding_model.encode(texts)
|
71 |
-
index.add(embeddings)
|
72 |
-
doc_store.extend(texts)
|
73 |
st.write("Data processed and added to knowledge base!")
|
74 |
|
75 |
# Provide a summary of the uploaded content
|
@@ -91,8 +159,8 @@ elif page == "Q&A":
|
|
91 |
user_query = translate_text(user_query, detected_query_lang, "en")
|
92 |
|
93 |
query_embedding = embedding_model.encode([user_query])
|
94 |
-
D, I = index.search(query_embedding, k=5) # Retrieve top 5 documents
|
95 |
-
context = " ".join([
|
96 |
|
97 |
# Pass translated query and context to the QA pipeline
|
98 |
result = qa_pipeline(question=user_query, context=context)
|
|
|
1 |
import streamlit as st
|
2 |
+
import sqlite3
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
from docx import Document
|
8 |
+
import PyMuPDF
|
9 |
import requests
|
10 |
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
11 |
from langdetect import detect
|
12 |
+
import os
|
13 |
|
14 |
# Initialize models and pipeline
|
15 |
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased")
|
16 |
embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
17 |
|
18 |
# FAISS index setup (in-memory for this example)
|
19 |
+
dimension = 512 # Size of the embeddings
|
20 |
+
index = faiss.IndexFlatL2(dimension)
|
21 |
|
22 |
# Initialize translation model for on-the-fly translation
|
23 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
24 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
25 |
|
26 |
+
# SQLite Database Setup
|
27 |
+
DB_PATH = "knowledge_base.db"
|
28 |
+
|
29 |
+
def init_db():
|
30 |
+
""" Initialize the database and tables if they don't exist. """
|
31 |
+
conn = sqlite3.connect(DB_PATH)
|
32 |
+
c = conn.cursor()
|
33 |
+
c.execute('''
|
34 |
+
CREATE TABLE IF NOT EXISTS documents (
|
35 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
36 |
+
content TEXT NOT NULL,
|
37 |
+
language TEXT,
|
38 |
+
embedding BLOB NOT NULL
|
39 |
+
)
|
40 |
+
''')
|
41 |
+
conn.commit()
|
42 |
+
conn.close()
|
43 |
+
|
44 |
+
def store_document(content, language, embedding):
|
45 |
+
""" Store document content, language, and embedding in the SQLite database. """
|
46 |
+
conn = sqlite3.connect(DB_PATH)
|
47 |
+
c = conn.cursor()
|
48 |
+
c.execute("INSERT INTO documents (content, language, embedding) VALUES (?, ?, ?)",
|
49 |
+
(content, language, embedding.tobytes()))
|
50 |
+
conn.commit()
|
51 |
+
conn.close()
|
52 |
+
|
53 |
+
def load_documents():
|
54 |
+
""" Load all documents and embeddings from the SQLite database. """
|
55 |
+
conn = sqlite3.connect(DB_PATH)
|
56 |
+
c = conn.cursor()
|
57 |
+
c.execute("SELECT content, language, embedding FROM documents")
|
58 |
+
rows = c.fetchall()
|
59 |
+
conn.close()
|
60 |
+
|
61 |
+
documents = []
|
62 |
+
embeddings = []
|
63 |
+
for content, language, embedding_blob in rows:
|
64 |
+
documents.append(content)
|
65 |
+
embeddings.append(np.frombuffer(embedding_blob, dtype=np.float32))
|
66 |
+
|
67 |
+
return documents, np.array(embeddings)
|
68 |
+
|
69 |
def translate_text(text, src_lang, tgt_lang):
|
70 |
+
""" Translate text using the M2M100 model. """
|
71 |
tokenizer.src_lang = src_lang
|
72 |
encoded = tokenizer(text, return_tensors="pt")
|
73 |
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(tgt_lang))
|
74 |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
75 |
|
76 |
+
# Initialize database and FAISS index
|
77 |
+
init_db()
|
78 |
+
documents, embeddings = load_documents()
|
79 |
+
if len(embeddings) > 0:
|
80 |
+
index.add(embeddings)
|
81 |
+
|
82 |
# Sidebar for navigation
|
83 |
st.sidebar.title("Navigation")
|
84 |
page = st.sidebar.radio("Go to", ["Upload Knowledge", "Q&A"])
|
|
|
108 |
detected_lang = detect(text)
|
109 |
st.write(f"Detected language: {detected_lang}")
|
110 |
|
111 |
+
# Generate embeddings
|
112 |
+
embedding = embedding_model.encode([text])[0]
|
113 |
+
|
114 |
+
# Store the document and embedding in the database
|
115 |
+
store_document(text, detected_lang, embedding)
|
116 |
+
|
117 |
+
# Add the embedding to FAISS index
|
118 |
+
index.add(np.array([embedding], dtype=np.float32))
|
119 |
+
documents.append(text)
|
120 |
texts.append(text)
|
121 |
|
122 |
# Process URL
|
|
|
124 |
response = requests.get(url)
|
125 |
soup = BeautifulSoup(response.text, 'html.parser')
|
126 |
text = soup.get_text()
|
127 |
+
detected_lang = detect(text)
|
128 |
+
st.write(f"Detected language: {detected_lang}")
|
129 |
+
|
130 |
+
# Generate embedding
|
131 |
+
embedding = embedding_model.encode([text])[0]
|
132 |
+
|
133 |
+
# Store the document and embedding in the database
|
134 |
+
store_document(text, detected_lang, embedding)
|
135 |
+
|
136 |
+
# Add the embedding to FAISS index
|
137 |
+
index.add(np.array([embedding], dtype=np.float32))
|
138 |
+
documents.append(text)
|
139 |
texts.append(text)
|
140 |
|
|
|
|
|
|
|
|
|
141 |
st.write("Data processed and added to knowledge base!")
|
142 |
|
143 |
# Provide a summary of the uploaded content
|
|
|
159 |
user_query = translate_text(user_query, detected_query_lang, "en")
|
160 |
|
161 |
query_embedding = embedding_model.encode([user_query])
|
162 |
+
D, I = index.search(np.array(query_embedding, dtype=np.float32), k=5) # Retrieve top 5 documents
|
163 |
+
context = " ".join([documents[i] for i in I[0]])
|
164 |
|
165 |
# Pass translated query and context to the QA pipeline
|
166 |
result = qa_pipeline(question=user_query, context=context)
|