Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
|
3 |
+
import PyMuPDF # for PDF handling
|
4 |
+
from docx import Document
|
5 |
+
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
import faiss
|
8 |
+
import numpy as np
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
from langdetect import detect
|
11 |
+
|
12 |
+
# Initialize models and pipeline
|
13 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased")
|
14 |
+
embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
15 |
+
|
16 |
+
# FAISS index setup (in-memory for this example)
|
17 |
+
index = faiss.IndexFlatL2(512)
|
18 |
+
doc_store = []
|
19 |
+
|
20 |
+
# Initialize translation model for on-the-fly translation
|
21 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
22 |
+
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
23 |
+
|
24 |
+
# Function to translate text using the M2M100 model
|
25 |
+
def translate_text(text, src_lang, tgt_lang):
|
26 |
+
tokenizer.src_lang = src_lang
|
27 |
+
encoded = tokenizer(text, return_tensors="pt")
|
28 |
+
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(tgt_lang))
|
29 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
30 |
+
|
31 |
+
# Sidebar for navigation
|
32 |
+
st.sidebar.title("Navigation")
|
33 |
+
page = st.sidebar.radio("Go to", ["Upload Knowledge", "Q&A"])
|
34 |
+
|
35 |
+
# Page 1: Knowledge Upload
|
36 |
+
if page == "Upload Knowledge":
|
37 |
+
st.title("Upload Knowledge Base")
|
38 |
+
uploaded_files = st.file_uploader("Upload your files (DOCX, PDF)", type=["pdf", "docx"], accept_multiple_files=True)
|
39 |
+
url = st.text_input("Or enter a website URL to scrape")
|
40 |
+
|
41 |
+
if uploaded_files or url:
|
42 |
+
st.write("Processing your data...")
|
43 |
+
texts = []
|
44 |
+
|
45 |
+
# Process uploaded files
|
46 |
+
for file in uploaded_files:
|
47 |
+
if file.type == "application/pdf":
|
48 |
+
with PyMuPDF.open(file) as pdf_file:
|
49 |
+
text = ""
|
50 |
+
for page in pdf_file.pages():
|
51 |
+
text += page.get_text()
|
52 |
+
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
53 |
+
doc = Document(file)
|
54 |
+
text = " ".join([para.text for para in doc.paragraphs])
|
55 |
+
|
56 |
+
# Language detection
|
57 |
+
detected_lang = detect(text)
|
58 |
+
st.write(f"Detected language: {detected_lang}")
|
59 |
+
|
60 |
+
texts.append(text)
|
61 |
+
|
62 |
+
# Process URL
|
63 |
+
if url:
|
64 |
+
response = requests.get(url)
|
65 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
66 |
+
text = soup.get_text()
|
67 |
+
texts.append(text)
|
68 |
+
|
69 |
+
# Create embeddings and store in FAISS
|
70 |
+
embeddings = embedding_model.encode(texts)
|
71 |
+
index.add(embeddings)
|
72 |
+
doc_store.extend(texts)
|
73 |
+
st.write("Data processed and added to knowledge base!")
|
74 |
+
|
75 |
+
# Provide a summary of the uploaded content
|
76 |
+
for i, text in enumerate(texts):
|
77 |
+
st.write(f"Summary of Document {i+1}:")
|
78 |
+
st.write(text[:500] + "...") # Display first 500 characters as a summary
|
79 |
+
|
80 |
+
# Page 2: Q&A Interface
|
81 |
+
elif page == "Q&A":
|
82 |
+
st.title("Ask the Knowledge Base")
|
83 |
+
user_query = st.text_input("Enter your query:")
|
84 |
+
|
85 |
+
if user_query:
|
86 |
+
detected_query_lang = detect(user_query)
|
87 |
+
|
88 |
+
# Translate the query if it's in a different language than the knowledge base
|
89 |
+
if detected_query_lang != "en":
|
90 |
+
st.write(f"Translating query from {detected_query_lang} to English")
|
91 |
+
user_query = translate_text(user_query, detected_query_lang, "en")
|
92 |
+
|
93 |
+
query_embedding = embedding_model.encode([user_query])
|
94 |
+
D, I = index.search(query_embedding, k=5) # Retrieve top 5 documents
|
95 |
+
context = " ".join([doc_store[i] for i in I[0]])
|
96 |
+
|
97 |
+
# Pass translated query and context to the QA pipeline
|
98 |
+
result = qa_pipeline(question=user_query, context=context)
|
99 |
+
st.write(f"Answer: {result['answer']}")
|