|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, check: |
|
https://huggingface.co/docs/huggingface_hub/en/guides/inference |
|
""" |
|
|
|
|
|
client = InferenceClient("one1cat/FineTunes_LLM_CFR_49") |
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
""" |
|
Generates responses using the fine-tuned CFR 49 model. |
|
""" |
|
|
|
|
|
prompt = f"{system_message}\n\nUser: {message}\n\nAssistant:" |
|
|
|
|
|
response = "" |
|
|
|
try: |
|
for token in client.text_generation( |
|
prompt, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
stream=True, |
|
): |
|
response += token |
|
yield response |
|
|
|
except Exception as e: |
|
yield f"Error: {str(e)}" |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are an AI trained on CFR 49 regulations.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|