CFR49_LLM / app.py
Armando Medina
updatef for llmam
16db460
raw
history blame
1.48 kB
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, check:
https://huggingface.co/docs/huggingface_hub/en/guides/inference
"""
# Initialize the Inference API Client with your model
client = InferenceClient("one1cat/FineTunes_LLM_CFR_49")
def respond(message, history, system_message, max_tokens, temperature, top_p):
"""
Generates responses using the fine-tuned CFR 49 model.
"""
# Format prompt
prompt = f"{system_message}\n\nUser: {message}\n\nAssistant:"
# Generate response
response = ""
try:
for token in client.text_generation(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True, # Enables token streaming
):
response += token
yield response
except Exception as e:
yield f"Error: {str(e)}"
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are an AI trained on CFR 49 regulations.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()