import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, check: https://huggingface.co/docs/huggingface_hub/en/guides/inference """ # Initialize the Inference API Client with your model client = InferenceClient("one1cat/FineTunes_LLM_CFR_49") def respond(message, history, system_message, max_tokens, temperature, top_p): """ Generates responses using the fine-tuned CFR 49 model. """ # Format prompt prompt = f"{system_message}\n\nUser: {message}\n\nAssistant:" # Generate response response = "" try: for token in client.text_generation( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, # Enables token streaming ): response += token yield response except Exception as e: yield f"Error: {str(e)}" # Gradio Chat Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are an AI trained on CFR 49 regulations.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()