obichimav's picture
Update app.py
048ef77 verified
# # imports
# import os
# import json
# import base64
# from io import BytesIO
# from dotenv import load_dotenv
# from openai import OpenAI
# import gradio as gr
# import numpy as np
# from PIL import Image, ImageDraw
# import requests
# import torch
# from transformers import (
# AutoProcessor,
# Owlv2ForObjectDetection,
# AutoModelForZeroShotObjectDetection
# )
# # from transformers import AutoProcessor, Owlv2ForObjectDetection
# from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
# # Initialization
# load_dotenv()
# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
# PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
# MODEL = "gpt-4o"
# openai = OpenAI()
# # Initialize models
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Owlv2
# owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
# owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# # DINO
# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)
# system_message = """You are an expert in object detection. When users mention:
# 1. "count [object(s)]" - Use detect_objects with proper format based on model
# 2. "detect [object(s)]" - Same as count
# 3. "show [object(s)]" - Same as count
# For DINO model: Format queries as "a [object]." (e.g., "a frog.")
# For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]
# Always use object detection tool when counting/detecting is mentioned."""
# system_message += "Always be accurate. If you don't know the answer, say so."
# class State:
# def __init__(self):
# self.current_image = None
# self.last_prediction = None
# self.current_model = "owlv2" # Default model
# state = State()
# def get_preprocessed_image(pixel_values):
# pixel_values = pixel_values.squeeze().numpy()
# unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
# unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
# unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
# return unnormalized_image
# def encode_image_to_base64(image_array):
# if image_array is None:
# return None
# image = Image.fromarray(image_array)
# buffered = BytesIO()
# image.save(buffered, format="JPEG")
# return base64.b64encode(buffered.getvalue()).decode('utf-8')
# def format_query_for_model(text_input, model_type="owlv2"):
# """Format query based on model requirements"""
# # Extract objects (e.g., "detect a lion" -> "lion")
# text = text_input.lower()
# words = [w.strip('.,?!') for w in text.split()
# if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
# if model_type == "owlv2":
# # Return just the list of queries for Owlv2, not nested list
# queries = ["a photo of " + obj for obj in words]
# print("Owlv2 queries:", queries)
# return queries
# else: # DINO
# # DINO query format
# query = f"a {words[:]}."
# print("DINO query:", query)
# return query
# def detect_objects(query_text):
# if state.current_image is None:
# return {"count": 0, "message": "No image provided"}
# image = Image.fromarray(state.current_image)
# draw = ImageDraw.Draw(image)
# if state.current_model == "owlv2":
# # For Owlv2, pass the text queries directly
# inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
# with torch.no_grad():
# outputs = owlv2_model(**inputs)
# results = owlv2_processor.post_process_object_detection(
# outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
# )
# else: # DINO
# # For DINO, pass the single text query
# inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
# with torch.no_grad():
# outputs = dino_model(**inputs)
# results = dino_processor.post_process_grounded_object_detection(
# outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
# target_sizes=[image.size[::-1]]
# )
# # Draw detection boxes
# boxes = results[0]["boxes"]
# scores = results[0]["scores"]
# for box, score in zip(boxes, scores):
# box = [round(i) for i in box.tolist()]
# draw.rectangle(box, outline="red", width=3)
# draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
# state.last_prediction = np.array(image)
# return {
# "count": len(boxes),
# "confidence": scores.tolist(),
# "message": f"Detected {len(boxes)} objects"
# }
# def identify_plant():
# if state.current_image is None:
# return {"error": "No image provided"}
# image = Image.fromarray(state.current_image)
# img_byte_arr = BytesIO()
# image.save(img_byte_arr, format='JPEG')
# img_byte_arr = img_byte_arr.getvalue()
# api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
# files = [('images', ('image.jpg', img_byte_arr))]
# data = {'organs': ['leaf']}
# try:
# response = requests.post(api_endpoint, files=files, data=data)
# if response.status_code == 200:
# result = response.json()
# best_match = result['results'][0]
# return {
# "scientific_name": best_match['species']['scientificName'],
# "common_names": best_match['species'].get('commonNames', []),
# "family": best_match['species']['family']['scientificName'],
# "genus": best_match['species']['genus']['scientificName'],
# "confidence": f"{best_match['score']*100:.1f}%"
# }
# else:
# return {"error": f"API Error: {response.status_code}"}
# except Exception as e:
# return {"error": f"Error: {str(e)}"}
# # Tool definitions
# object_detection_function = {
# "name": "detect_objects",
# "description": "Use this function to detect and count objects in images based on text queries.",
# "parameters": {
# "type": "object",
# "properties": {
# "query_text": {
# "type": "array",
# "description": "List of text queries describing objects to detect",
# "items": {"type": "string"}
# }
# }
# }
# }
# plant_identification_function = {
# "name": "identify_plant",
# "description": "Use this when asked about plant species identification or botanical classification.",
# "parameters": {
# "type": "object",
# "properties": {},
# "required": []
# }
# }
# tools = [
# {"type": "function", "function": object_detection_function},
# {"type": "function", "function": plant_identification_function}
# ]
# def format_tool_response(tool_response_content):
# data = json.loads(tool_response_content)
# if "error" in data:
# return f"Error: {data['error']}"
# elif "scientific_name" in data:
# return f"""📋 Plant Identification Results:
# 🌿 Scientific Name: {data['scientific_name']}
# 👥 Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
# 👪 Family: {data['family']}
# 🎯 Confidence: {data['confidence']}"""
# else:
# return f"I detected {data['count']} objects in the image."
# def chat(message, image, history):
# if image is not None:
# state.current_image = image
# if state.current_image is None:
# return "Please upload an image first.", None
# base64_image = encode_image_to_base64(state.current_image)
# messages = [{"role": "system", "content": system_message}]
# for human, assistant in history:
# messages.append({"role": "user", "content": human})
# messages.append({"role": "assistant", "content": assistant})
# # Extract objects to detect from user message
# # This could be enhanced with better NLP
# objects_to_detect = message.lower()
# formatted_query = format_query_for_model(objects_to_detect, state.current_model)
# messages.append({
# "role": "user",
# "content": [
# {"type": "text", "text": message},
# {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
# ]
# })
# response = openai.chat.completions.create(
# model=MODEL,
# messages=messages,
# tools=tools,
# max_tokens=300
# )
# if response.choices[0].finish_reason == "tool_calls":
# message = response.choices[0].message
# messages.append(message)
# for tool_call in message.tool_calls:
# if tool_call.function.name == "detect_objects":
# results = detect_objects(formatted_query)
# else:
# results = identify_plant()
# tool_response = {
# "role": "tool",
# "content": json.dumps(results),
# "tool_call_id": tool_call.id
# }
# messages.append(tool_response)
# response = openai.chat.completions.create(
# model=MODEL,
# messages=messages,
# max_tokens=300
# )
# return response.choices[0].message.content, state.last_prediction
# def update_model(choice):
# print(f"Model switched to: {choice}")
# state.current_model = choice.lower()
# return f"Model switched to {choice}"
# # Create Gradio interface
# with gr.Blocks() as demo:
# gr.Markdown("# Object Detection and Plant Analysis System")
# with gr.Row():
# with gr.Column():
# model_choice = gr.Radio(
# choices=["Owlv2", "DINO"],
# value="Owlv2",
# label="Select Detection Model",
# interactive=True
# )
# image_input = gr.Image(type="numpy", label="Upload Image")
# text_input = gr.Textbox(
# label="Ask about the image",
# placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
# )
# with gr.Row():
# submit_btn = gr.Button("Analyze")
# reset_btn = gr.Button("Reset")
# with gr.Column():
# chatbot = gr.Chatbot()
# # output_image = gr.Image(label="Detected Objects")
# output_image = gr.Image(type="numpy", label="Detected Objects")
# def process_interaction(message, image, history):
# response, pred_image = chat(message, image, history)
# history.append((message, response))
# return "", pred_image, history
# def reset_interface():
# state.current_image = None
# state.last_prediction = None
# return None, None, None, []
# model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
# submit_btn.click(
# fn=process_interaction,
# inputs=[text_input, image_input, chatbot],
# outputs=[text_input, output_image, chatbot]
# )
# reset_btn.click(
# fn=reset_interface,
# inputs=[],
# outputs=[image_input, output_image, text_input, chatbot]
# )
# gr.Markdown("""## Instructions
# 1. Select the detection model (Owlv2 or DINO)
# 2. Upload an image
# 3. Ask specific questions about objects or plants
# 4. Click Analyze to get results""")
# demo.launch(share=True)
import os
import openai
import gradio as gr
import vision_agent.tools as T
# Set your OpenAI API key (ensure the environment variable is set or replace with your key)
openai.api_key = os.getenv("OPENAI_API_KEY", "your-openai-api-key-here")
def get_single_prompt(user_input):
"""
Uses OpenAI to rephrase the user's chatter into a single, concise prompt for object detection.
The generated prompt will not include any question marks.
"""
if not user_input.strip():
user_input = "Detect objects in the image"
prompt_instruction = (
f"Based on the following user input, generate a single, concise prompt for object detection. "
f"Do not include any question marks in the output. "
f"User input: \"{user_input}\""
)
response = openai.chat.completions.create(
model="gpt-4o", # adjust model name if needed
messages=[{"role": "user", "content": prompt_instruction}],
temperature=0.3,
max_tokens=50,
)
generated_prompt = response.choices[0].message.content.strip()
# Ensure no question marks remain.
generated_prompt = generated_prompt.replace("?", "")
return generated_prompt
def is_count_query(user_input):
"""
Check if the user's input indicates a counting request.
Looks for common keywords such as "count", "how many", "number of", etc.
"""
keywords = ["count", "how many", "number of", "total", "get me a count"]
for kw in keywords:
if kw.lower() in user_input.lower():
return True
return False
def process_question_and_detect(user_input, image):
"""
1. Uses OpenAI to generate a single, concise prompt (without question marks) from the user's input.
2. Feeds that prompt to the VisionAgent detection function.
3. Overlays the detection bounding boxes on the image.
4. If the user's input implies a counting request, it also returns the count of detected objects.
"""
if image is None:
return None, "Please upload an image."
# Generate the concise prompt from the user's input.
generated_prompt = get_single_prompt(user_input)
# Run object detection using the generated prompt.
dets = T.agentic_object_detection(generated_prompt, image)
# Overlay bounding boxes on the image.
viz = T.overlay_bounding_boxes(image, dets)
# If the user's input implies a counting request, include the count.
count_text = ""
if is_count_query(user_input):
count = len(dets)
count_text = f"Detected {count} objects."
output_text = f"Generated prompt: {generated_prompt}\n{count_text}"
print(output_text)
return viz, output_text
with gr.Blocks() as demo:
gr.Markdown("# VisionAgent Object Detection and Counting App")
gr.Markdown(
"""
Enter your input (for example:
- "What is the number of fruit in my image?"
- "How many bicycles can you see?"
- "Get me a count of my bottles")
and upload an image.
The app uses OpenAI to generate a single, concise prompt for object detection (without question marks),
then runs the detection. If your input implies a counting request, it will also display the count of detected objects.
"""
)
with gr.Row():
user_input = gr.Textbox(label="Enter your input", placeholder="Type your input here...")
image_input = gr.Image(label="Upload Image", type="numpy")
submit_btn = gr.Button("Detect and Count")
output_image = gr.Image(label="Detection Result")
output_text = gr.Textbox(label="Output Details")
submit_btn.click(fn=process_question_and_detect, inputs=[user_input, image_input], outputs=[output_image, output_text])
demo.launch(share=True)