File size: 15,868 Bytes
f8cecaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a1336
e5939e0
70a1336
e5939e0
2541bac
e5939e0
 
2541bac
e5939e0
2541bac
e5939e0
 
2541bac
e5939e0
 
 
 
 
 
 
 
 
d9a7f7a
057015d
 
e5939e0
057015d
e5939e0
057015d
 
e5939e0
 
2541bac
e5939e0
2541bac
e5939e0
 
2541bac
e5939e0
 
 
 
 
2541bac
e5939e0
2541bac
e5939e0
 
 
057015d
2541bac
 
e5939e0
70a1336
057015d
e5939e0
70a1336
e5939e0
 
70a1336
e5939e0
 
70a1336
057015d
e5939e0
 
 
 
 
 
048ef77
e5939e0
70a1336
 
e5939e0
2541bac
 
e5939e0
 
 
 
 
 
 
 
2541bac
 
70a1336
 
e5939e0
 
70a1336
e5939e0
2541bac
e5939e0
 
2541bac
e5939e0
2541bac
057015d
 
70a1336
e5939e0
d9a7f7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# # imports
# import os
# import json
# import base64
# from io import BytesIO
# from dotenv import load_dotenv
# from openai import OpenAI
# import gradio as gr
# import numpy as np
# from PIL import Image, ImageDraw
# import requests
# import torch
# from transformers import (
#     AutoProcessor, 
#     Owlv2ForObjectDetection,
#     AutoModelForZeroShotObjectDetection
# )
# # from transformers import AutoProcessor, Owlv2ForObjectDetection
# from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD

# # Initialization
# load_dotenv()
# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
# PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
# MODEL = "gpt-4o"
# openai = OpenAI()

# # Initialize models
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Owlv2
# owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
# owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# # DINO
# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)

# system_message = """You are an expert in object detection. When users mention:
# 1. "count [object(s)]" - Use detect_objects with proper format based on model
# 2. "detect [object(s)]" - Same as count
# 3. "show [object(s)]" - Same as count

# For DINO model: Format queries as "a [object]." (e.g., "a frog.")
# For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]

# Always use object detection tool when counting/detecting is mentioned."""

# system_message += "Always be accurate. If you don't know the answer, say so."


# class State:
#     def __init__(self):
#         self.current_image = None
#         self.last_prediction = None
#         self.current_model = "owlv2"  # Default model

# state = State()

# def get_preprocessed_image(pixel_values):
#     pixel_values = pixel_values.squeeze().numpy()
#     unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
#     unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
#     unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
#     return unnormalized_image

# def encode_image_to_base64(image_array):
#     if image_array is None:
#         return None
#     image = Image.fromarray(image_array)
#     buffered = BytesIO()
#     image.save(buffered, format="JPEG")
#     return base64.b64encode(buffered.getvalue()).decode('utf-8')


# def format_query_for_model(text_input, model_type="owlv2"):
#     """Format query based on model requirements"""
#     # Extract objects (e.g., "detect a lion" -> "lion")
#     text = text_input.lower()
#     words = [w.strip('.,?!') for w in text.split() 
#              if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
    
#     if model_type == "owlv2":
#         # Return just the list of queries for Owlv2, not nested list
#         queries = ["a photo of " + obj for obj in words]
#         print("Owlv2 queries:", queries)
#         return queries
#     else:  # DINO
#         # DINO query format
#         query = f"a {words[:]}."
#         print("DINO query:", query)
#         return query
       

# def detect_objects(query_text):
#     if state.current_image is None:
#         return {"count": 0, "message": "No image provided"}
    
#     image = Image.fromarray(state.current_image)
#     draw = ImageDraw.Draw(image)
    
#     if state.current_model == "owlv2":
#         # For Owlv2, pass the text queries directly
#         inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
#         with torch.no_grad():
#             outputs = owlv2_model(**inputs)
#         results = owlv2_processor.post_process_object_detection(
#             outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
#         )
#     else:  # DINO
#         # For DINO, pass the single text query
#         inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
#         with torch.no_grad():
#             outputs = dino_model(**inputs)
#         results = dino_processor.post_process_grounded_object_detection(
#             outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
#             target_sizes=[image.size[::-1]]
#         )
    
#     # Draw detection boxes
#     boxes = results[0]["boxes"]
#     scores = results[0]["scores"]
    
#     for box, score in zip(boxes, scores):
#         box = [round(i) for i in box.tolist()]
#         draw.rectangle(box, outline="red", width=3)
#         draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
    
#     state.last_prediction = np.array(image)
#     return {
#         "count": len(boxes),
#         "confidence": scores.tolist(),
#         "message": f"Detected {len(boxes)} objects"
#     }

# def identify_plant():
#     if state.current_image is None:
#         return {"error": "No image provided"}
    
#     image = Image.fromarray(state.current_image)
#     img_byte_arr = BytesIO()
#     image.save(img_byte_arr, format='JPEG')
#     img_byte_arr = img_byte_arr.getvalue()
    
#     api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
#     files = [('images', ('image.jpg', img_byte_arr))]
#     data = {'organs': ['leaf']}
    
#     try:
#         response = requests.post(api_endpoint, files=files, data=data)
#         if response.status_code == 200:
#             result = response.json()
#             best_match = result['results'][0]
#             return {
#                 "scientific_name": best_match['species']['scientificName'],
#                 "common_names": best_match['species'].get('commonNames', []),
#                 "family": best_match['species']['family']['scientificName'],
#                 "genus": best_match['species']['genus']['scientificName'],
#                 "confidence": f"{best_match['score']*100:.1f}%"
#             }
#         else:
#             return {"error": f"API Error: {response.status_code}"}
#     except Exception as e:
#         return {"error": f"Error: {str(e)}"}

# # Tool definitions
# object_detection_function = {
#     "name": "detect_objects",
#     "description": "Use this function to detect and count objects in images based on text queries.",
#     "parameters": {
#         "type": "object",
#         "properties": {
#             "query_text": {
#                 "type": "array",
#                 "description": "List of text queries describing objects to detect",
#                 "items": {"type": "string"}
#             }
#         }
#     }
# }

# plant_identification_function = {
#     "name": "identify_plant",
#     "description": "Use this when asked about plant species identification or botanical classification.",
#     "parameters": {
#         "type": "object",
#         "properties": {},
#         "required": []
#     }
# }

# tools = [
#     {"type": "function", "function": object_detection_function},
#     {"type": "function", "function": plant_identification_function}
# ]

# def format_tool_response(tool_response_content):
#     data = json.loads(tool_response_content)
#     if "error" in data:
#         return f"Error: {data['error']}"
#     elif "scientific_name" in data:
#         return f"""πŸ“‹ Plant Identification Results:
        
# 🌿 Scientific Name: {data['scientific_name']}
# πŸ‘₯ Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
# πŸ‘ͺ Family: {data['family']}
# 🎯 Confidence: {data['confidence']}"""
#     else:
#         return f"I detected {data['count']} objects in the image."

# def chat(message, image, history):
#     if image is not None:
#         state.current_image = image
    
#     if state.current_image is None:
#         return "Please upload an image first.", None
    
#     base64_image = encode_image_to_base64(state.current_image)
#     messages = [{"role": "system", "content": system_message}]
    
#     for human, assistant in history:
#         messages.append({"role": "user", "content": human})
#         messages.append({"role": "assistant", "content": assistant})
    
#     # Extract objects to detect from user message
#     # This could be enhanced with better NLP
#     objects_to_detect = message.lower()
#     formatted_query = format_query_for_model(objects_to_detect, state.current_model)
    
#     messages.append({
#         "role": "user",
#         "content": [
#             {"type": "text", "text": message},
#             {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
#         ]
#     })

#     response = openai.chat.completions.create(
#         model=MODEL,
#         messages=messages,
#         tools=tools,
#         max_tokens=300
#     )

#     if response.choices[0].finish_reason == "tool_calls":
#         message = response.choices[0].message
#         messages.append(message)
        
#         for tool_call in message.tool_calls:
#             if tool_call.function.name == "detect_objects":
#                 results = detect_objects(formatted_query)
#             else:
#                 results = identify_plant()
                
#             tool_response = {
#                 "role": "tool",
#                 "content": json.dumps(results),
#                 "tool_call_id": tool_call.id
#             }
#             messages.append(tool_response)

#         response = openai.chat.completions.create(
#             model=MODEL,
#             messages=messages,
#             max_tokens=300
#         )

#     return response.choices[0].message.content, state.last_prediction

# def update_model(choice):
#     print(f"Model switched to: {choice}")
#     state.current_model = choice.lower()
#     return f"Model switched to {choice}"

# # Create Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown("# Object Detection and Plant Analysis System")
    
#     with gr.Row():
#         with gr.Column():
#             model_choice = gr.Radio(
#                 choices=["Owlv2", "DINO"],
#                 value="Owlv2",
#                 label="Select Detection Model",
#                 interactive=True
#             )
#             image_input = gr.Image(type="numpy", label="Upload Image")
#             text_input = gr.Textbox(
#                 label="Ask about the image",
#                 placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
#             )
#             with gr.Row():
#                 submit_btn = gr.Button("Analyze")
#                 reset_btn = gr.Button("Reset")
        
#         with gr.Column():
#             chatbot = gr.Chatbot()
#             # output_image = gr.Image(label="Detected Objects")
#             output_image = gr.Image(type="numpy", label="Detected Objects")
    
#     def process_interaction(message, image, history):
#         response, pred_image = chat(message, image, history)
#         history.append((message, response))
#         return "", pred_image, history
    
#     def reset_interface():
#         state.current_image = None
#         state.last_prediction = None
#         return None, None, None, []
    
#     model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
    
#     submit_btn.click(
#         fn=process_interaction,
#         inputs=[text_input, image_input, chatbot],
#         outputs=[text_input, output_image, chatbot]
#     )
    
#     reset_btn.click(
#         fn=reset_interface,
#         inputs=[],
#         outputs=[image_input, output_image, text_input, chatbot]
#     )

#     gr.Markdown("""## Instructions
# 1. Select the detection model (Owlv2 or DINO)
# 2. Upload an image
# 3. Ask specific questions about objects or plants
# 4. Click Analyze to get results""")

# demo.launch(share=True)
import os
import openai
import gradio as gr
import vision_agent.tools as T

# Set your OpenAI API key (ensure the environment variable is set or replace with your key)
openai.api_key = os.getenv("OPENAI_API_KEY", "your-openai-api-key-here")

def get_single_prompt(user_input):
    """
    Uses OpenAI to rephrase the user's chatter into a single, concise prompt for object detection.
    The generated prompt will not include any question marks.
    """
    if not user_input.strip():
        user_input = "Detect objects in the image"
    
    prompt_instruction = (
        f"Based on the following user input, generate a single, concise prompt for object detection. "
        f"Do not include any question marks in the output. "
        f"User input: \"{user_input}\""
    )
    
    response = openai.chat.completions.create(
        model="gpt-4o",  # adjust model name if needed
        messages=[{"role": "user", "content": prompt_instruction}],
        temperature=0.3,
        max_tokens=50,
    )
    generated_prompt = response.choices[0].message.content.strip()
    # Ensure no question marks remain.
    generated_prompt = generated_prompt.replace("?", "")
    return generated_prompt

def is_count_query(user_input):
    """
    Check if the user's input indicates a counting request.
    Looks for common keywords such as "count", "how many", "number of", etc.
    """
    keywords = ["count", "how many", "number of", "total", "get me a count"]
    for kw in keywords:
        if kw.lower() in user_input.lower():
            return True
    return False

def process_question_and_detect(user_input, image):
    """
    1. Uses OpenAI to generate a single, concise prompt (without question marks) from the user's input.
    2. Feeds that prompt to the VisionAgent detection function.
    3. Overlays the detection bounding boxes on the image.
    4. If the user's input implies a counting request, it also returns the count of detected objects.
    """
    if image is None:
        return None, "Please upload an image."
    
    # Generate the concise prompt from the user's input.
    generated_prompt = get_single_prompt(user_input)
    
    # Run object detection using the generated prompt.
    dets = T.agentic_object_detection(generated_prompt, image)
    
    # Overlay bounding boxes on the image.
    viz = T.overlay_bounding_boxes(image, dets)
    
    # If the user's input implies a counting request, include the count.
    count_text = ""
    if is_count_query(user_input):
        count = len(dets)
        count_text = f"Detected {count} objects."
    
    output_text = f"Generated prompt: {generated_prompt}\n{count_text}"
    print(output_text)
    return viz, output_text

with gr.Blocks() as demo:
    gr.Markdown("# VisionAgent Object Detection and Counting App")
    gr.Markdown(
        """
        Enter your input (for example:
        - "What is the number of fruit in my image?"
        - "How many bicycles can you see?"
        - "Get me a count of my bottles")
        and upload an image.
        
        The app uses OpenAI to generate a single, concise prompt for object detection (without question marks),
        then runs the detection. If your input implies a counting request, it will also display the count of detected objects.
        """
    )
    
    with gr.Row():
        user_input = gr.Textbox(label="Enter your input", placeholder="Type your input here...")
        image_input = gr.Image(label="Upload Image", type="numpy")
    
    submit_btn = gr.Button("Detect and Count")
    
    output_image = gr.Image(label="Detection Result")
    output_text = gr.Textbox(label="Output Details")
    
    submit_btn.click(fn=process_question_and_detect, inputs=[user_input, image_input], outputs=[output_image, output_text])
    
    demo.launch(share=True)