File size: 15,868 Bytes
f8cecaf 70a1336 e5939e0 70a1336 e5939e0 2541bac e5939e0 2541bac e5939e0 2541bac e5939e0 2541bac e5939e0 d9a7f7a 057015d e5939e0 057015d e5939e0 057015d e5939e0 2541bac e5939e0 2541bac e5939e0 2541bac e5939e0 2541bac e5939e0 2541bac e5939e0 057015d 2541bac e5939e0 70a1336 057015d e5939e0 70a1336 e5939e0 70a1336 e5939e0 70a1336 057015d e5939e0 048ef77 e5939e0 70a1336 e5939e0 2541bac e5939e0 2541bac 70a1336 e5939e0 70a1336 e5939e0 2541bac e5939e0 2541bac e5939e0 2541bac 057015d 70a1336 e5939e0 d9a7f7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# # imports
# import os
# import json
# import base64
# from io import BytesIO
# from dotenv import load_dotenv
# from openai import OpenAI
# import gradio as gr
# import numpy as np
# from PIL import Image, ImageDraw
# import requests
# import torch
# from transformers import (
# AutoProcessor,
# Owlv2ForObjectDetection,
# AutoModelForZeroShotObjectDetection
# )
# # from transformers import AutoProcessor, Owlv2ForObjectDetection
# from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
# # Initialization
# load_dotenv()
# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
# PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
# MODEL = "gpt-4o"
# openai = OpenAI()
# # Initialize models
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Owlv2
# owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
# owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# # DINO
# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)
# system_message = """You are an expert in object detection. When users mention:
# 1. "count [object(s)]" - Use detect_objects with proper format based on model
# 2. "detect [object(s)]" - Same as count
# 3. "show [object(s)]" - Same as count
# For DINO model: Format queries as "a [object]." (e.g., "a frog.")
# For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]
# Always use object detection tool when counting/detecting is mentioned."""
# system_message += "Always be accurate. If you don't know the answer, say so."
# class State:
# def __init__(self):
# self.current_image = None
# self.last_prediction = None
# self.current_model = "owlv2" # Default model
# state = State()
# def get_preprocessed_image(pixel_values):
# pixel_values = pixel_values.squeeze().numpy()
# unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
# unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
# unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
# return unnormalized_image
# def encode_image_to_base64(image_array):
# if image_array is None:
# return None
# image = Image.fromarray(image_array)
# buffered = BytesIO()
# image.save(buffered, format="JPEG")
# return base64.b64encode(buffered.getvalue()).decode('utf-8')
# def format_query_for_model(text_input, model_type="owlv2"):
# """Format query based on model requirements"""
# # Extract objects (e.g., "detect a lion" -> "lion")
# text = text_input.lower()
# words = [w.strip('.,?!') for w in text.split()
# if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
# if model_type == "owlv2":
# # Return just the list of queries for Owlv2, not nested list
# queries = ["a photo of " + obj for obj in words]
# print("Owlv2 queries:", queries)
# return queries
# else: # DINO
# # DINO query format
# query = f"a {words[:]}."
# print("DINO query:", query)
# return query
# def detect_objects(query_text):
# if state.current_image is None:
# return {"count": 0, "message": "No image provided"}
# image = Image.fromarray(state.current_image)
# draw = ImageDraw.Draw(image)
# if state.current_model == "owlv2":
# # For Owlv2, pass the text queries directly
# inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
# with torch.no_grad():
# outputs = owlv2_model(**inputs)
# results = owlv2_processor.post_process_object_detection(
# outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
# )
# else: # DINO
# # For DINO, pass the single text query
# inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
# with torch.no_grad():
# outputs = dino_model(**inputs)
# results = dino_processor.post_process_grounded_object_detection(
# outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
# target_sizes=[image.size[::-1]]
# )
# # Draw detection boxes
# boxes = results[0]["boxes"]
# scores = results[0]["scores"]
# for box, score in zip(boxes, scores):
# box = [round(i) for i in box.tolist()]
# draw.rectangle(box, outline="red", width=3)
# draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
# state.last_prediction = np.array(image)
# return {
# "count": len(boxes),
# "confidence": scores.tolist(),
# "message": f"Detected {len(boxes)} objects"
# }
# def identify_plant():
# if state.current_image is None:
# return {"error": "No image provided"}
# image = Image.fromarray(state.current_image)
# img_byte_arr = BytesIO()
# image.save(img_byte_arr, format='JPEG')
# img_byte_arr = img_byte_arr.getvalue()
# api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
# files = [('images', ('image.jpg', img_byte_arr))]
# data = {'organs': ['leaf']}
# try:
# response = requests.post(api_endpoint, files=files, data=data)
# if response.status_code == 200:
# result = response.json()
# best_match = result['results'][0]
# return {
# "scientific_name": best_match['species']['scientificName'],
# "common_names": best_match['species'].get('commonNames', []),
# "family": best_match['species']['family']['scientificName'],
# "genus": best_match['species']['genus']['scientificName'],
# "confidence": f"{best_match['score']*100:.1f}%"
# }
# else:
# return {"error": f"API Error: {response.status_code}"}
# except Exception as e:
# return {"error": f"Error: {str(e)}"}
# # Tool definitions
# object_detection_function = {
# "name": "detect_objects",
# "description": "Use this function to detect and count objects in images based on text queries.",
# "parameters": {
# "type": "object",
# "properties": {
# "query_text": {
# "type": "array",
# "description": "List of text queries describing objects to detect",
# "items": {"type": "string"}
# }
# }
# }
# }
# plant_identification_function = {
# "name": "identify_plant",
# "description": "Use this when asked about plant species identification or botanical classification.",
# "parameters": {
# "type": "object",
# "properties": {},
# "required": []
# }
# }
# tools = [
# {"type": "function", "function": object_detection_function},
# {"type": "function", "function": plant_identification_function}
# ]
# def format_tool_response(tool_response_content):
# data = json.loads(tool_response_content)
# if "error" in data:
# return f"Error: {data['error']}"
# elif "scientific_name" in data:
# return f"""π Plant Identification Results:
# πΏ Scientific Name: {data['scientific_name']}
# π₯ Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
# πͺ Family: {data['family']}
# π― Confidence: {data['confidence']}"""
# else:
# return f"I detected {data['count']} objects in the image."
# def chat(message, image, history):
# if image is not None:
# state.current_image = image
# if state.current_image is None:
# return "Please upload an image first.", None
# base64_image = encode_image_to_base64(state.current_image)
# messages = [{"role": "system", "content": system_message}]
# for human, assistant in history:
# messages.append({"role": "user", "content": human})
# messages.append({"role": "assistant", "content": assistant})
# # Extract objects to detect from user message
# # This could be enhanced with better NLP
# objects_to_detect = message.lower()
# formatted_query = format_query_for_model(objects_to_detect, state.current_model)
# messages.append({
# "role": "user",
# "content": [
# {"type": "text", "text": message},
# {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
# ]
# })
# response = openai.chat.completions.create(
# model=MODEL,
# messages=messages,
# tools=tools,
# max_tokens=300
# )
# if response.choices[0].finish_reason == "tool_calls":
# message = response.choices[0].message
# messages.append(message)
# for tool_call in message.tool_calls:
# if tool_call.function.name == "detect_objects":
# results = detect_objects(formatted_query)
# else:
# results = identify_plant()
# tool_response = {
# "role": "tool",
# "content": json.dumps(results),
# "tool_call_id": tool_call.id
# }
# messages.append(tool_response)
# response = openai.chat.completions.create(
# model=MODEL,
# messages=messages,
# max_tokens=300
# )
# return response.choices[0].message.content, state.last_prediction
# def update_model(choice):
# print(f"Model switched to: {choice}")
# state.current_model = choice.lower()
# return f"Model switched to {choice}"
# # Create Gradio interface
# with gr.Blocks() as demo:
# gr.Markdown("# Object Detection and Plant Analysis System")
# with gr.Row():
# with gr.Column():
# model_choice = gr.Radio(
# choices=["Owlv2", "DINO"],
# value="Owlv2",
# label="Select Detection Model",
# interactive=True
# )
# image_input = gr.Image(type="numpy", label="Upload Image")
# text_input = gr.Textbox(
# label="Ask about the image",
# placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
# )
# with gr.Row():
# submit_btn = gr.Button("Analyze")
# reset_btn = gr.Button("Reset")
# with gr.Column():
# chatbot = gr.Chatbot()
# # output_image = gr.Image(label="Detected Objects")
# output_image = gr.Image(type="numpy", label="Detected Objects")
# def process_interaction(message, image, history):
# response, pred_image = chat(message, image, history)
# history.append((message, response))
# return "", pred_image, history
# def reset_interface():
# state.current_image = None
# state.last_prediction = None
# return None, None, None, []
# model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
# submit_btn.click(
# fn=process_interaction,
# inputs=[text_input, image_input, chatbot],
# outputs=[text_input, output_image, chatbot]
# )
# reset_btn.click(
# fn=reset_interface,
# inputs=[],
# outputs=[image_input, output_image, text_input, chatbot]
# )
# gr.Markdown("""## Instructions
# 1. Select the detection model (Owlv2 or DINO)
# 2. Upload an image
# 3. Ask specific questions about objects or plants
# 4. Click Analyze to get results""")
# demo.launch(share=True)
import os
import openai
import gradio as gr
import vision_agent.tools as T
# Set your OpenAI API key (ensure the environment variable is set or replace with your key)
openai.api_key = os.getenv("OPENAI_API_KEY", "your-openai-api-key-here")
def get_single_prompt(user_input):
"""
Uses OpenAI to rephrase the user's chatter into a single, concise prompt for object detection.
The generated prompt will not include any question marks.
"""
if not user_input.strip():
user_input = "Detect objects in the image"
prompt_instruction = (
f"Based on the following user input, generate a single, concise prompt for object detection. "
f"Do not include any question marks in the output. "
f"User input: \"{user_input}\""
)
response = openai.chat.completions.create(
model="gpt-4o", # adjust model name if needed
messages=[{"role": "user", "content": prompt_instruction}],
temperature=0.3,
max_tokens=50,
)
generated_prompt = response.choices[0].message.content.strip()
# Ensure no question marks remain.
generated_prompt = generated_prompt.replace("?", "")
return generated_prompt
def is_count_query(user_input):
"""
Check if the user's input indicates a counting request.
Looks for common keywords such as "count", "how many", "number of", etc.
"""
keywords = ["count", "how many", "number of", "total", "get me a count"]
for kw in keywords:
if kw.lower() in user_input.lower():
return True
return False
def process_question_and_detect(user_input, image):
"""
1. Uses OpenAI to generate a single, concise prompt (without question marks) from the user's input.
2. Feeds that prompt to the VisionAgent detection function.
3. Overlays the detection bounding boxes on the image.
4. If the user's input implies a counting request, it also returns the count of detected objects.
"""
if image is None:
return None, "Please upload an image."
# Generate the concise prompt from the user's input.
generated_prompt = get_single_prompt(user_input)
# Run object detection using the generated prompt.
dets = T.agentic_object_detection(generated_prompt, image)
# Overlay bounding boxes on the image.
viz = T.overlay_bounding_boxes(image, dets)
# If the user's input implies a counting request, include the count.
count_text = ""
if is_count_query(user_input):
count = len(dets)
count_text = f"Detected {count} objects."
output_text = f"Generated prompt: {generated_prompt}\n{count_text}"
print(output_text)
return viz, output_text
with gr.Blocks() as demo:
gr.Markdown("# VisionAgent Object Detection and Counting App")
gr.Markdown(
"""
Enter your input (for example:
- "What is the number of fruit in my image?"
- "How many bicycles can you see?"
- "Get me a count of my bottles")
and upload an image.
The app uses OpenAI to generate a single, concise prompt for object detection (without question marks),
then runs the detection. If your input implies a counting request, it will also display the count of detected objects.
"""
)
with gr.Row():
user_input = gr.Textbox(label="Enter your input", placeholder="Type your input here...")
image_input = gr.Image(label="Upload Image", type="numpy")
submit_btn = gr.Button("Detect and Count")
output_image = gr.Image(label="Detection Result")
output_text = gr.Textbox(label="Output Details")
submit_btn.click(fn=process_question_and_detect, inputs=[user_input, image_input], outputs=[output_image, output_text])
demo.launch(share=True)
|