AttentiveEraser / app.py
nuwandaa's picture
Add run line
db4e824
raw
history blame
5.9 kB
import os
import torch
from diffusers import DDIMScheduler,DiffusionPipeline
import torch.nn.functional as F
import cv2
from torchvision.utils import save_image
from diffusers.utils import load_image
from torchvision.transforms.functional import to_tensor, gaussian_blur
from matplotlib import pyplot as plt
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider
from torchvision.transforms.functional import to_pil_image, to_tensor
from PIL import ImageFilter
def preprocess_image(input_image, device):
image = to_tensor(input_image)
image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
if image.shape[1] != 3:
image = image.expand(-1, 3, -1, -1)
image = F.interpolate(image, (1024, 1024))
image = image.to(dtype).to(device)
return image
def preprocess_mask(input_mask, device):
mask = to_tensor(input_mask.convert('L'))
mask = mask.unsqueeze_(0).float() # 0 or 1
mask = F.interpolate(mask, (1024, 1024))
mask = gaussian_blur(mask, kernel_size=(77, 77))
mask[mask < 0.1] = 0
mask[mask >= 0.1] = 1
mask = mask.to(dtype).to(device)
return mask
def make_redder(img, mask, increase_factor=0.4):
img_redder = img.clone()
mask_expanded = mask.expand_as(img)
img_redder[0][mask_expanded[0] == 1] = torch.clamp(img_redder[0][mask_expanded[0] == 1] + increase_factor, 0, 1)
return img_redder
# Model loading parameters
is_cpu_offload_enabled = False
is_attention_slicing_enabled = True
# Load model
dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = DiffusionPipeline.from_pretrained(
model_path,
custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser.py",
scheduler=scheduler,
variant="fp16",
use_safetensors=True,
torch_dtype=dtype,
).to(device)
if is_attention_slicing_enabled:
pipeline.enable_attention_slicing()
if is_cpu_offload_enabled:
pipeline.enable_model_cpu_offload()
@spaces.GPU
def remove(gradio_image, rm_guidance_scale=9, num_inference_steps=50, seed=42, strength=0.8):
generator = torch.Generator('cuda').manual_seed(seed)
prompt = "" # Set prompt to null
source_image_pure = gradio_image["background"]
mask_image_pure = gradio_image["layers"][0]
source_image = preprocess_image(source_image_pure, device)
mask = preprocess_mask(mask_image_pure, device)
START_STEP = 0 # AAS start step
END_STEP = int(strength * num_inference_steps) # AAS end step
LAYER = 34 # 0~23down,24~33mid,34~69up /AAS start layer
END_LAYER = 70 # AAS end layer
ss_steps = 9 # similarity suppression steps
ss_scale = 0.3 # similarity suppression scale
image = pipeline(
prompt=prompt,
image=source_image,
mask_image=mask,
height=1024,
width=1024,
AAS=True, # enable AAS
strength=strength, # inpainting strength
rm_guidance_scale=rm_guidance_scale, # removal guidance scale
ss_steps = ss_steps, # similarity suppression steps
ss_scale = ss_scale, # similarity suppression scale
AAS_start_step=START_STEP, # AAS start step
AAS_start_layer=LAYER, # AAS start layer
AAS_end_layer=END_LAYER, # AAS end layer
num_inference_steps=num_inference_steps, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
generator=g,
guidance_scale=1,
output_type='pt'
).images[0]
img = (source_image * 0.5 + 0.5).squeeze(0)
mask_red = mask.squeeze(0)
img_redder = make_redder(img, mask_red)
pil_mask = to_pil_image(mask.squeeze(0))
pil_mask_blurred = pil_mask.filter(ImageFilter.GaussianBlur(radius=15))
mask_blurred = to_tensor(pil_mask_blurred).unsqueeze_(0).to(mask.device)
mask_f = 1-(1 - mask) * (1 - mask_blurred)
image_1 = image.unsqueeze(0)
return source_image, image_1
title = """<h1 align="center">Object Remove</h1>"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced Options", open=False):
guidance_scale = gr.Slider(
minimum=1,
maximum=20,
value=9,
step=0.1,
label="Guidance Scale"
)
num_steps = gr.Slider(
minimum=5,
maximum=100,
value=50,
step=1,
label="Steps"
)
seed = gr.Slider(
minimum=42,
maximum=100000000000,
value=42,
step=1,
label="Seed"
)
strength = gr.Slider(
minimum=0,
maximum=1,
value=0.8,
step=0.1,
label="Strength"
)
input_image = gr.ImageMask(
type="pil", label="Input Image",crop_size=(1200,1200), layers=False
)
with gr.Column():
with gr.Row():
with gr.Column():
run_button = gr.Button("Generate")
result = ImageSlider(
interactive=False,
label="Generated Image",
type="pil"
)
run_button.click(
fn=remove,
inputs=[input_image, guidance_scale, num_steps, seed, strength],
outputs=result,
)
demo.queue(max_size=12).launch(share=False)