Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,896 Bytes
6c29834 db4e824 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import torch
from diffusers import DDIMScheduler,DiffusionPipeline
import torch.nn.functional as F
import cv2
from torchvision.utils import save_image
from diffusers.utils import load_image
from torchvision.transforms.functional import to_tensor, gaussian_blur
from matplotlib import pyplot as plt
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider
from torchvision.transforms.functional import to_pil_image, to_tensor
from PIL import ImageFilter
def preprocess_image(input_image, device):
image = to_tensor(input_image)
image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
if image.shape[1] != 3:
image = image.expand(-1, 3, -1, -1)
image = F.interpolate(image, (1024, 1024))
image = image.to(dtype).to(device)
return image
def preprocess_mask(input_mask, device):
mask = to_tensor(input_mask.convert('L'))
mask = mask.unsqueeze_(0).float() # 0 or 1
mask = F.interpolate(mask, (1024, 1024))
mask = gaussian_blur(mask, kernel_size=(77, 77))
mask[mask < 0.1] = 0
mask[mask >= 0.1] = 1
mask = mask.to(dtype).to(device)
return mask
def make_redder(img, mask, increase_factor=0.4):
img_redder = img.clone()
mask_expanded = mask.expand_as(img)
img_redder[0][mask_expanded[0] == 1] = torch.clamp(img_redder[0][mask_expanded[0] == 1] + increase_factor, 0, 1)
return img_redder
# Model loading parameters
is_cpu_offload_enabled = False
is_attention_slicing_enabled = True
# Load model
dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = DiffusionPipeline.from_pretrained(
model_path,
custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser.py",
scheduler=scheduler,
variant="fp16",
use_safetensors=True,
torch_dtype=dtype,
).to(device)
if is_attention_slicing_enabled:
pipeline.enable_attention_slicing()
if is_cpu_offload_enabled:
pipeline.enable_model_cpu_offload()
@spaces.GPU
def remove(gradio_image, rm_guidance_scale=9, num_inference_steps=50, seed=42, strength=0.8):
generator = torch.Generator('cuda').manual_seed(seed)
prompt = "" # Set prompt to null
source_image_pure = gradio_image["background"]
mask_image_pure = gradio_image["layers"][0]
source_image = preprocess_image(source_image_pure, device)
mask = preprocess_mask(mask_image_pure, device)
START_STEP = 0 # AAS start step
END_STEP = int(strength * num_inference_steps) # AAS end step
LAYER = 34 # 0~23down,24~33mid,34~69up /AAS start layer
END_LAYER = 70 # AAS end layer
ss_steps = 9 # similarity suppression steps
ss_scale = 0.3 # similarity suppression scale
image = pipeline(
prompt=prompt,
image=source_image,
mask_image=mask,
height=1024,
width=1024,
AAS=True, # enable AAS
strength=strength, # inpainting strength
rm_guidance_scale=rm_guidance_scale, # removal guidance scale
ss_steps = ss_steps, # similarity suppression steps
ss_scale = ss_scale, # similarity suppression scale
AAS_start_step=START_STEP, # AAS start step
AAS_start_layer=LAYER, # AAS start layer
AAS_end_layer=END_LAYER, # AAS end layer
num_inference_steps=num_inference_steps, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
generator=g,
guidance_scale=1,
output_type='pt'
).images[0]
img = (source_image * 0.5 + 0.5).squeeze(0)
mask_red = mask.squeeze(0)
img_redder = make_redder(img, mask_red)
pil_mask = to_pil_image(mask.squeeze(0))
pil_mask_blurred = pil_mask.filter(ImageFilter.GaussianBlur(radius=15))
mask_blurred = to_tensor(pil_mask_blurred).unsqueeze_(0).to(mask.device)
mask_f = 1-(1 - mask) * (1 - mask_blurred)
image_1 = image.unsqueeze(0)
return source_image, image_1
title = """<h1 align="center">Object Remove</h1>"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced Options", open=False):
guidance_scale = gr.Slider(
minimum=1,
maximum=20,
value=9,
step=0.1,
label="Guidance Scale"
)
num_steps = gr.Slider(
minimum=5,
maximum=100,
value=50,
step=1,
label="Steps"
)
seed = gr.Slider(
minimum=42,
maximum=100000000000,
value=42,
step=1,
label="Seed"
)
strength = gr.Slider(
minimum=0,
maximum=1,
value=0.8,
step=0.1,
label="Strength"
)
input_image = gr.ImageMask(
type="pil", label="Input Image",crop_size=(1200,1200), layers=False
)
with gr.Column():
with gr.Row():
with gr.Column():
run_button = gr.Button("Generate")
result = ImageSlider(
interactive=False,
label="Generated Image",
type="pil"
)
run_button.click(
fn=remove,
inputs=[input_image, guidance_scale, num_steps, seed, strength],
outputs=result,
)
demo.queue(max_size=12).launch(share=False)
|