File size: 5,896 Bytes
6c29834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db4e824
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import torch
from diffusers import DDIMScheduler,DiffusionPipeline
import torch.nn.functional as F
import cv2
from torchvision.utils import save_image
from diffusers.utils import load_image
from torchvision.transforms.functional import to_tensor, gaussian_blur
from matplotlib import pyplot as plt
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider
from torchvision.transforms.functional import to_pil_image, to_tensor
from PIL import ImageFilter


def preprocess_image(input_image, device):
    image = to_tensor(input_image)
    image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
    if image.shape[1] != 3:
        image = image.expand(-1, 3, -1, -1)
    image = F.interpolate(image, (1024, 1024))
    image = image.to(dtype).to(device)
    
    return image


def preprocess_mask(input_mask, device):
    mask = to_tensor(input_mask.convert('L'))
    mask = mask.unsqueeze_(0).float()  # 0 or 1
    mask = F.interpolate(mask, (1024, 1024))
    mask = gaussian_blur(mask, kernel_size=(77, 77))
    mask[mask < 0.1] = 0
    mask[mask >= 0.1] = 1
    mask = mask.to(dtype).to(device)
    
    return mask


def make_redder(img, mask, increase_factor=0.4):
    img_redder = img.clone()
    mask_expanded = mask.expand_as(img)
    img_redder[0][mask_expanded[0] == 1] = torch.clamp(img_redder[0][mask_expanded[0] == 1] + increase_factor, 0, 1)
    
    return img_redder


# Model loading parameters
is_cpu_offload_enabled = False
is_attention_slicing_enabled = True

# Load model
dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)

model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = DiffusionPipeline.from_pretrained(
    model_path,
    custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser.py",
    scheduler=scheduler,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=dtype,
).to(device)

if is_attention_slicing_enabled:
    pipeline.enable_attention_slicing()
    
if is_cpu_offload_enabled:
    pipeline.enable_model_cpu_offload()


@spaces.GPU
def remove(gradio_image, rm_guidance_scale=9, num_inference_steps=50, seed=42, strength=0.8):
    generator = torch.Generator('cuda').manual_seed(seed)
    prompt = "" # Set prompt to null

    source_image_pure = gradio_image["background"]
    mask_image_pure = gradio_image["layers"][0]
    source_image = preprocess_image(source_image_pure, device)
    mask = preprocess_mask(mask_image_pure, device)
    
    START_STEP = 0 # AAS start step
    END_STEP = int(strength * num_inference_steps) # AAS end step
    LAYER = 34 # 0~23down,24~33mid,34~69up /AAS start layer 
    END_LAYER = 70 # AAS end layer
    ss_steps = 9 # similarity suppression steps
    ss_scale = 0.3 # similarity suppression scale
    
    image = pipeline(
        prompt=prompt,
        image=source_image,
        mask_image=mask,
        height=1024,
        width=1024,
        AAS=True, # enable AAS
        strength=strength, # inpainting strength
        rm_guidance_scale=rm_guidance_scale, # removal guidance scale
        ss_steps = ss_steps, # similarity suppression steps
        ss_scale = ss_scale, # similarity suppression scale
        AAS_start_step=START_STEP, # AAS start step
        AAS_start_layer=LAYER, # AAS start layer 
        AAS_end_layer=END_LAYER, # AAS end layer
        num_inference_steps=num_inference_steps, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
        generator=g,
        guidance_scale=1,
        output_type='pt'
    ).images[0]
    
    img = (source_image * 0.5 + 0.5).squeeze(0)
    mask_red = mask.squeeze(0)
    img_redder = make_redder(img, mask_red)
    
    pil_mask = to_pil_image(mask.squeeze(0))
    pil_mask_blurred = pil_mask.filter(ImageFilter.GaussianBlur(radius=15))
    mask_blurred = to_tensor(pil_mask_blurred).unsqueeze_(0).to(mask.device)
    mask_f = 1-(1 - mask) * (1 - mask_blurred)
    
    image_1 = image.unsqueeze(0)
    
    return source_image, image_1
    

title = """<h1 align="center">Object Remove</h1>"""
with gr.Blocks() as demo:
    gr.HTML(title)
    with gr.Row():
        with gr.Column():
            with gr.Accordion("Advanced Options", open=False):
                guidance_scale = gr.Slider(
                    minimum=1,
                    maximum=20,
                    value=9,
                    step=0.1,
                    label="Guidance Scale"
                )
                num_steps = gr.Slider(
                    minimum=5,
                    maximum=100,
                    value=50,
                    step=1,
                    label="Steps"
                )
                seed = gr.Slider(
                    minimum=42,
                    maximum=100000000000,
                    value=42,
                    step=1,
                    label="Seed"
                )
                strength = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.8,
                    step=0.1,
                    label="Strength"
                )
            
            input_image = gr.ImageMask(
                type="pil", label="Input Image",crop_size=(1200,1200), layers=False
            )
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    run_button = gr.Button("Generate")

            result = ImageSlider(
                interactive=False,
                label="Generated Image",
                type="pil"
            )
    
    run_button.click(
        fn=remove,
        inputs=[input_image, guidance_scale, num_steps, seed, strength],
        outputs=result,
    )
    
demo.queue(max_size=12).launch(share=False)