Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import random | |
import torch | |
from pathlib import Path | |
import numpy as np | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import spaces | |
from typing import Union, Sequence, Mapping, Any | |
import logging | |
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes, SaveImage # <-- Node SaveImage | |
from comfy import model_management | |
import folder_paths | |
# 1. Configurar logging para debug | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# 2. Configuração de Caminhos e Imports | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(current_dir) | |
# 3. Configuração de Diretórios | |
BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
output_dir = os.path.join(BASE_DIR, "output") | |
models_dir = os.path.join(BASE_DIR, "models") | |
os.makedirs(output_dir, exist_ok=True) | |
os.makedirs(models_dir, exist_ok=True) | |
folder_paths.set_output_directory(output_dir) | |
# 4. Configurar caminhos dos modelos e verificar estrutura | |
MODEL_FOLDERS = ["style_models", "text_encoders", "vae", "unet", "clip_vision"] | |
for model_folder in MODEL_FOLDERS: | |
folder_path = os.path.join(models_dir, model_folder) | |
os.makedirs(folder_path, exist_ok=True) | |
folder_paths.add_model_folder_path(model_folder, folder_path) | |
logger.info(f"Pasta de modelo configurada: {model_folder}") | |
# 5. Diagnóstico CUDA | |
logger.info(f"Python version: {sys.version}") | |
logger.info(f"Torch version: {torch.__version__}") | |
logger.info(f"CUDA disponível: {torch.cuda.is_available()}") | |
logger.info(f"Quantidade de GPUs: {torch.cuda.device_count()}") | |
if torch.cuda.is_available(): | |
logger.info(f"GPU atual: {torch.cuda.get_device_name(0)}") | |
# 6. Inicialização do ComfyUI | |
logger.info("Inicializando ComfyUI...") | |
try: | |
init_extra_nodes() | |
except Exception as e: | |
logger.warning(f"Aviso na inicialização de nós extras: {str(e)}") | |
logger.info("Continuando mesmo com avisos nos nós extras...") | |
# 7. Helper Functions | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
def verify_file_exists(folder: str, filename: str) -> bool: | |
file_path = os.path.join(models_dir, folder, filename) | |
exists = os.path.exists(file_path) | |
if not exists: | |
logger.error(f"Arquivo não encontrado: {file_path}") | |
return exists | |
# 8. Download de Modelos | |
logger.info("Baixando modelos necessários...") | |
try: | |
hf_hub_download( | |
repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
filename="flux1-redux-dev.safetensors", | |
local_dir=os.path.join(models_dir, "style_models") | |
) | |
hf_hub_download( | |
repo_id="comfyanonymous/flux_text_encoders", | |
filename="t5xxl_fp16.safetensors", | |
local_dir=os.path.join(models_dir, "text_encoders") | |
) | |
hf_hub_download( | |
repo_id="zer0int/CLIP-GmP-ViT-L-14", | |
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", | |
local_dir=os.path.join(models_dir, "text_encoders") | |
) | |
hf_hub_download( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
filename="ae.safetensors", | |
local_dir=os.path.join(models_dir, "vae") | |
) | |
hf_hub_download( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
filename="flux1-dev.safetensors", | |
local_dir=os.path.join(models_dir, "unet") | |
) | |
hf_hub_download( | |
repo_id="Comfy-Org/sigclip_vision_384", | |
filename="sigclip_vision_patch14_384.safetensors", | |
local_dir=os.path.join(models_dir, "clip_vision") | |
) | |
except Exception as e: | |
logger.error(f"Erro ao baixar modelos: {str(e)}") | |
raise | |
# 9. Inicialização dos Modelos | |
logger.info("Inicializando modelos...") | |
try: | |
with torch.no_grad(): | |
# CLIP | |
logger.info("Carregando CLIP...") | |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
CLIP_MODEL = dualcliploader.load_clip( | |
clip_name1="t5xxl_fp16.safetensors", | |
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", | |
type="flux" | |
) | |
if CLIP_MODEL is None: | |
raise ValueError("Falha ao carregar CLIP model") | |
# CLIP Vision | |
logger.info("Carregando CLIP Vision...") | |
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]() | |
CLIP_VISION = clipvisionloader.load_clip( | |
clip_name="sigclip_vision_patch14_384.safetensors" | |
) | |
if CLIP_VISION is None: | |
raise ValueError("Falha ao carregar CLIP Vision model") | |
# Style Model | |
logger.info("Carregando Style Model...") | |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
STYLE_MODEL = stylemodelloader.load_style_model( | |
style_model_name="flux1-redux-dev.safetensors" | |
) | |
if STYLE_MODEL is None: | |
raise ValueError("Falha ao carregar Style Model") | |
# VAE | |
logger.info("Carregando VAE...") | |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
VAE_MODEL = vaeloader.load_vae( | |
vae_name="ae.safetensors" | |
) | |
if VAE_MODEL is None: | |
raise ValueError("Falha ao carregar VAE model") | |
# UNET | |
logger.info("Carregando UNET...") | |
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() | |
UNET_MODEL = unetloader.load_unet( | |
unet_name="flux1-dev.safetensors", | |
weight_dtype="fp8_e4m3fn" # ajuste se preciso | |
) | |
if UNET_MODEL is None: | |
raise ValueError("Falha ao carregar UNET model") | |
logger.info("Carregando modelos na GPU...") | |
model_loaders = [CLIP_MODEL, VAE_MODEL, CLIP_VISION, UNET_MODEL] | |
model_management.load_models_gpu([ | |
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] | |
for loader in model_loaders | |
]) | |
logger.info("Modelos carregados com sucesso") | |
except Exception as e: | |
logger.error(f"Erro ao inicializar modelos: {str(e)}") | |
raise | |
# 10. Função de Geração | |
def generate_image( | |
prompt, input_image, lora_weight, guidance, downsampling_factor, | |
weight, seed, width, height, batch_size, steps, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
try: | |
with torch.no_grad(): | |
logger.info(f"Iniciando geração com prompt: {prompt}") | |
# Codificar texto | |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
encoded_text = cliptextencode.encode( | |
text=prompt, | |
clip=CLIP_MODEL[0] | |
) | |
# Carregar e processar imagem | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
loaded_image = loadimage.load_image(image=input_image) | |
if loaded_image is None: | |
raise ValueError("Erro ao carregar a imagem de entrada") | |
logger.info("Imagem carregada com sucesso") | |
# Flux Guidance | |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
flux_guidance = fluxguidance.append( | |
guidance=guidance, | |
conditioning=encoded_text[0] | |
) | |
# Redux Advanced | |
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]() | |
redux_result = reduxadvanced.apply_stylemodel( | |
downsampling_factor=downsampling_factor, | |
downsampling_function="area", | |
mode="keep aspect ratio", | |
weight=weight, | |
conditioning=flux_guidance[0], | |
style_model=STYLE_MODEL[0], | |
clip_vision=CLIP_VISION[0], | |
image=loaded_image[0] | |
) | |
# Empty Latent | |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
empty_latent = emptylatentimage.generate( | |
width=width, | |
height=height, | |
batch_size=batch_size | |
) | |
# KSampler | |
logger.info("Iniciando sampling...") | |
ksampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
sampled = ksampler.sample( | |
seed=seed, | |
steps=steps, | |
cfg=1, | |
sampler_name="euler", | |
scheduler="simple", | |
denoise=1, | |
model=UNET_MODEL[0], | |
positive=redux_result[0], | |
negative=flux_guidance[0], | |
latent_image=empty_latent[0] | |
) | |
# VAE Decode | |
logger.info("Decodificando imagem...") | |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
decoded = vaedecode.decode( | |
samples=sampled[0], | |
vae=VAE_MODEL[0] | |
) | |
# Salvar Imagem | |
logger.info("Salvando imagem via node SaveImage...") | |
decoded_tensor = decoded[0] | |
saveimage_node = NODE_CLASS_MAPPINGS["SaveImage"]() | |
result_dict = saveimage_node.save_images( | |
filename_prefix="Flux_", | |
images=decoded_tensor | |
) | |
saved_path = os.path.join(output_dir, result_dict["ui"]["images"][0]["filename"]) | |
logger.info(f"Imagem salva em: {saved_path}") | |
return saved_path | |
except Exception as e: | |
logger.error(f"Erro ao gerar imagem: {str(e)}") | |
return None | |
# 10. Interface Gradio | |
with gr.Blocks() as app: | |
gr.Markdown("# FLUX Redux Image Generator") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt here...", | |
lines=5 | |
) | |
input_image = gr.Image( | |
label="Input Image", | |
type="filepath" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
lora_weight = gr.Slider( | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=0.6, | |
label="LoRA Weight" | |
) | |
guidance = gr.Slider( | |
minimum=0, | |
maximum=20, | |
step=0.1, | |
value=3.5, | |
label="Guidance" | |
) | |
downsampling_factor = gr.Slider( | |
minimum=1, | |
maximum=8, | |
step=1, | |
value=3, | |
label="Downsampling Factor" | |
) | |
weight = gr.Slider( | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=1.0, | |
label="Model Weight" | |
) | |
with gr.Column(): | |
seed = gr.Number( | |
value=random.randint(1, 2**64), | |
label="Seed", | |
precision=0 | |
) | |
width = gr.Number( | |
value=1024, | |
label="Width", | |
precision=0 | |
) | |
height = gr.Number( | |
value=1024, | |
label="Height", | |
precision=0 | |
) | |
batch_size = gr.Number( | |
value=1, | |
label="Batch Size", | |
precision=0 | |
) | |
steps = gr.Number( | |
value=20, | |
label="Steps", | |
precision=0 | |
) | |
generate_btn = gr.Button("Generate Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image", type="filepath") | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[ | |
prompt_input, | |
input_image, | |
lora_weight, | |
guidance, | |
downsampling_factor, | |
weight, | |
seed, | |
width, | |
height, | |
batch_size, | |
steps | |
], | |
outputs=[output_image] | |
) | |
if __name__ == "__main__": | |
app.launch() | |