Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,948 Bytes
c8a8fcf bff8240 c73cdb0 c8a8fcf c73cdb0 c8a8fcf c73cdb0 88390af c73cdb0 7b7a87f b4a27cf 05ad421 2630bd2 05ad421 b4a27cf 2630bd2 2ff48aa b4a27cf c73cdb0 c8a8fcf c73cdb0 c8a8fcf c73cdb0 c8a8fcf c73cdb0 c8a8fcf c73cdb0 7b7a87f c73cdb0 c8a8fcf 9e195fc c73cdb0 9e195fc c73cdb0 941a8cc c73cdb0 9e195fc 941a8cc 9e195fc c73cdb0 c8a8fcf 9e195fc c73cdb0 9e195fc c73cdb0 9e195fc c8a8fcf 9e195fc c8a8fcf c73cdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import os
import shutil
import random
import sys
import tempfile
from typing import Sequence, Mapping, Any, Union
import spaces
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download
from comfy import model_management
def hf_hub_download_local(repo_id, filename, local_dir, **kwargs):
downloaded_path = hf_hub_download(repo_id=repo_id, filename=filename, **kwargs)
os.makedirs(local_dir, exist_ok=True)
base_filename = os.path.basename(filename)
target_path = os.path.join(local_dir, base_filename)
if os.path.exists(target_path) or os.path.islink(target_path):
os.remove(target_path)
os.symlink(downloaded_path, target_path)
return target_path
# --- Model Downloads ---
print("Downloading models from Hugging Face Hub...")
text_encoder_repo = hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors", local_dir="models/text_encoders")
print(text_encoder_repo)
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/vae/wan_2.1_vae.safetensors", local_dir="models/vae")
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/clip_vision/clip_vision_h.safetensors", local_dir="models/clip_vision")
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors", local_dir="models/loras")
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", local_dir="models/loras")
print("Downloads complete.")
# --- Boilerplate code from the original script ---
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
# This is a fallback for custom node outputs that might be dictionaries
if isinstance(obj, Mapping) and "result" in obj:
return obj["result"][index]
raise
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"'{name}' found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
else:
print("Could not find ComfyUI directory. Please run from a parent folder of ComfyUI.")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. This might be okay if you don't use it."
)
return
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find an optional 'extra_model_paths.yaml' config file.")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
loop.run_until_complete(init_extra_nodes(init_custom_nodes=True))
# --- Model Loading and Caching ---
MODELS_AND_NODES = {}
print("Setting up ComfyUI paths...")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
print("Importing custom nodes...")
import_custom_nodes()
# Now that paths are set up, we can import from nodes
from nodes import NODE_CLASS_MAPPINGS
global folder_paths # Make folder_paths globally accessible
import folder_paths
print("Loading models into memory. This may take a few minutes...")
# Load Text-to-Image models (CLIP, UNETs, VAE)
cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
MODELS_AND_NODES["clip"] = cliploader.load_clip(
clip_name="umt5_xxl_fp8_e4m3fn_scaled.safetensors", type="wan", device="cpu"
)
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unet_low_noise = unetloader.load_unet(
unet_name="wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors",
weight_dtype="default",
)
unet_high_noise = unetloader.load_unet(
unet_name="wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors",
weight_dtype="default",
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
MODELS_AND_NODES["vae"] = vaeloader.load_vae(vae_name="wan_2.1_vae.safetensors")
# Load LoRAs
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
MODELS_AND_NODES["model_low_noise"] = loraloadermodelonly.load_lora_model_only(
lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors",
strength_model=0.8,
model=get_value_at_index(unet_low_noise, 0),
)
MODELS_AND_NODES["model_high_noise"] = loraloadermodelonly.load_lora_model_only(
lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors",
strength_model=0.8,
model=get_value_at_index(unet_high_noise, 0),
)
# Load Vision model
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
MODELS_AND_NODES["clip_vision"] = clipvisionloader.load_clip(
clip_name="clip_vision_h.safetensors"
)
# Instantiate all required node classes
MODELS_AND_NODES["CLIPTextEncode"] = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
MODELS_AND_NODES["LoadImage"] = NODE_CLASS_MAPPINGS["LoadImage"]()
MODELS_AND_NODES["CLIPVisionEncode"] = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
MODELS_AND_NODES["ModelSamplingSD3"] = NODE_CLASS_MAPPINGS["ModelSamplingSD3"]()
MODELS_AND_NODES["PathchSageAttentionKJ"] = NODE_CLASS_MAPPINGS["PathchSageAttentionKJ"]()
MODELS_AND_NODES["WanFirstLastFrameToVideo"] = NODE_CLASS_MAPPINGS["WanFirstLastFrameToVideo"]()
MODELS_AND_NODES["KSamplerAdvanced"] = NODE_CLASS_MAPPINGS["KSamplerAdvanced"]()
MODELS_AND_NODES["VAEDecode"] = NODE_CLASS_MAPPINGS["VAEDecode"]()
MODELS_AND_NODES["CreateVideo"] = NODE_CLASS_MAPPINGS["CreateVideo"]()
MODELS_AND_NODES["SaveVideo"] = NODE_CLASS_MAPPINGS["SaveVideo"]()
print("Pre-loading main models onto GPU...")
model_loaders = [
MODELS_AND_NODES["clip"],
MODELS_AND_NODES["vae"],
MODELS_AND_NODES["model_low_noise"], # This is the UNET + LoRA
MODELS_AND_NODES["model_high_noise"], # This is the other UNET + LoRA
MODELS_AND_NODES["clip_vision"],
]
model_management.load_models_gpu([
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
])
print("All models loaded successfully!")
# --- Main Video Generation Logic ---
@spaces.GPU(duration=120)
def generate_video(
start_image_pil,
end_image_pil,
prompt,
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
duration=2,
progress=gr.Progress(track_tqdm=True)
):
"""
The main function to generate a video based on user inputs.
This function is called every time the user clicks the 'Generate' button.
"""
FPS = 16
num_frames = max(2, int(duration * FPS))
clip = MODELS_AND_NODES["clip"]
vae = MODELS_AND_NODES["vae"]
model_low_noise = MODELS_AND_NODES["model_low_noise"]
model_high_noise = MODELS_AND_NODES["model_high_noise"]
clip_vision = MODELS_AND_NODES["clip_vision"]
cliptextencode = MODELS_AND_NODES["CLIPTextEncode"]
loadimage = MODELS_AND_NODES["LoadImage"]
clipvisionencode = MODELS_AND_NODES["CLIPVisionEncode"]
modelsamplingsd3 = MODELS_AND_NODES["ModelSamplingSD3"]
pathchsageattentionkj = MODELS_AND_NODES["PathchSageAttentionKJ"]
wanfirstlastframetovideo = MODELS_AND_NODES["WanFirstLastFrameToVideo"]
ksampleradvanced = MODELS_AND_NODES["KSamplerAdvanced"]
vaedecode = MODELS_AND_NODES["VAEDecode"]
createvideo = MODELS_AND_NODES["CreateVideo"]
savevideo = MODELS_AND_NODES["SaveVideo"]
# Save uploaded images to temporary files
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as start_file, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as end_file:
start_image_pil.save(start_file.name)
end_image_pil.save(end_file.name)
start_image_path = start_file.name
end_image_path = end_file.name
with torch.inference_mode():
progress(0.1, desc="Encoding text and images...")
# --- Workflow execution ---
positive_conditioning = cliptextencode.encode(text=prompt, clip=get_value_at_index(clip, 0))
negative_conditioning = cliptextencode.encode(text=negative_prompt, clip=get_value_at_index(clip, 0))
start_image_loaded = loadimage.load_image(image=start_image_path)
end_image_loaded = loadimage.load_image(image=end_image_path)
clip_vision_encoded_start = clipvisionencode.encode(
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(start_image_loaded, 0)
)
clip_vision_encoded_end = clipvisionencode.encode(
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(end_image_loaded, 0)
)
progress(0.2, desc="Preparing initial latents...")
initial_latents = wanfirstlastframetovideo.EXECUTE_NORMALIZED(
width=480, height=480, length=num_frames, batch_size=1,
positive=get_value_at_index(positive_conditioning, 0),
negative=get_value_at_index(negative_conditioning, 0),
vae=get_value_at_index(vae, 0),
clip_vision_start_image=get_value_at_index(clip_vision_encoded_start, 0),
clip_vision_end_image=get_value_at_index(clip_vision_encoded_end, 0),
start_image=get_value_at_index(start_image_loaded, 0),
end_image=get_value_at_index(end_image_loaded, 0),
)
progress(0.3, desc="Patching models...")
model_low_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_low_noise, 0))
model_low_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_low_patched, 0))
model_high_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_high_noise, 0))
model_high_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_high_patched, 0))
progress(0.5, desc="Running KSampler (Step 1/2)...")
latent_step1 = ksampleradvanced.sample(
add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4,
return_with_leftover_noise="enable", model=get_value_at_index(model_high_final, 0),
positive=get_value_at_index(initial_latents, 0),
negative=get_value_at_index(initial_latents, 1),
latent_image=get_value_at_index(initial_latents, 2),
)
progress(0.7, desc="Running KSampler (Step 2/2)...")
latent_step2 = ksampleradvanced.sample(
add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000,
return_with_leftover_noise="disable", model=get_value_at_index(model_low_final, 0),
positive=get_value_at_index(initial_latents, 0),
negative=get_value_at_index(initial_latents, 1),
latent_image=get_value_at_index(latent_step1, 0),
)
progress(0.8, desc="Decoding VAE...")
decoded_images = vaedecode.decode(samples=get_value_at_index(latent_step2, 0), vae=get_value_at_index(vae, 0))
progress(0.9, desc="Creating and saving video...")
video_data = createvideo.create_video(fps=FPS, images=get_value_at_index(decoded_images, 0))
# Save the video to ComfyUI's output directory
save_result = savevideo.save_video(
filename_prefix="GradioVideo", format="mp4", codec="h264",
video=get_value_at_index(video_data, 0),
)
progress(1.0, desc="Done!")
return f"output/{save_result['ui']['images'][0]['filename']}"
css = '''
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
gr.Markdown("Running the [Wan 2.2 First/Last Frame ComfyUI workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/) on ZeroGPU")
with gr.Row():
with gr.Column():
with gr.Row():
start_image = gr.Image(type="pil", label="Start Frame")
end_image = gr.Image(type="pil", label="End Frame")
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images", value="transition")
with gr.Accordion("Advanced Settings", open=False):
duration = gr.Slider(
minimum=1.0,
maximum=5.0,
value=2.0,
step=0.1,
label="Video Duration (seconds)",
info="Longer videos take longer to generate"
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
visible=False
)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
output_video = gr.Video(label="Generated Video")
generate_button.click(
fn=generate_video,
inputs=[start_image, end_image, prompt, negative_prompt, duration],
outputs=output_video
)
gr.Examples(
examples=[
["poli_tower.png", "tower_takes_off.png", "the man turns"],
["capybara_zoomed.png", "capybara.webp", "a dramatic dolly zoom"],
],
inputs=[start_image, end_image, prompt],
outputs=output_video,
fn=generate_video,
cache_examples="lazy",
)
if __name__ == "__main__":
app = create_gradio_app()
app.launch(share=True) |